
Vipera Inc
200 Page Mill Road
Palo Alto, CA 94306. USA
www.vipera.com
info@vipera.com

Vipera OTA Provisioning Server

Technical Overview

Version 1.0

The Vipera provisioning portal allows content providers to stock content repositories with J2ME
application bundles, and to deliver those bundles to MIDP devices via WAP Push. The Vipera provisioning
portal provides a complete and hosted solution for all aspects of J2ME content storage, content
catalogization and delivery.

1

Revisions

Version Comments

1.0 Initial revision.

References
Key Reference

JSR 124 J2EETM Client Provisioning Specification.
http://www.jcp.org/en/jsr/detail?id=124

VIPERA Vipera Mobile Network Operator - Vision Whitepaper
http://www.vipera.com/

ADMIN-URL Provisioning portal content providers login (HTML browser)
http://ota.vipera.com/admin

CAT-URL Provisioning catalog browsing (WML or HTML browser)
http://ota.vipera.com/

ADMIN-URL Provisioning repository administration
http://ota.vipera.com/admin

PUSH-URL HTTP-POST URL for triggering WAP-Push provisioning
https://ota.vipera.com/push

Copyright 2005 Vipera Inc, Palo Alto, USA. All rights reserved.

2

1 WHAT IS PROVISIONING?... 4

1.1 WHY BOTHER?...4

2 VIPERA PROVISIONING SERVER – CONCEPTS.. 4

2.1 PROVISIONING USE CASES..5
2.2 PROVISIONING PROCESS...6

2.2.1 Stocking..6
2.2.2 Discovery... 7
2.2.3 Delivery..8

3 VIPERA PROVISIONING SERVER – USAGE.. 10

3.1 CONTENT PROVIDERS AND DEVELOPERS..10
3.1.1 Menu Structure.. 10
3.1.2 Basic Example..11
3.1.3 More Advanced Example... 11

3.2 MOBILE END USERS..11
3.2.1 Browsing the Bundle Catalog.. 11
3.2.2 Delivery through WAP Push..12

3.3 INTEGRATION INTO 3RD PARTY PORTALS..13
3.3.1 HTTP Request.. 13
3.3.2 HTTP Response..14

4 TERMINOLOGY.. 14

3

1 What is Provisioning?
Over-the-air (OTA) provisioning is the process of downloading and installing J2ME content (MIDlets) on
demand. For example, a mobile user would like to find an interesting game and download it to his or her
mobile phone. Or a corporation would like to install a new application version to the mobile device of a
certain employee.

The piece of software infrastructure making provisioning possible is called a provisioning server.
Provisioning servers are often compared with vending machines, allowing end users to pick applications
from a list of software choices.

If users will simply download a JAD and JAR file, then a web server such as Tomcat, Apache or IIS will
probably suffice. However, if a content provider wants to deploy a J2ME application to different device
types, and provide application bundles optimized for various device screen sizes or other device
capabilities, then a provisioning server is a much better alternative. JSR 124 [JSR 124] is the architecture
for such a server.

1.1 Why bother?
But why bother at all with J2ME application installation and provisioning? Aren't WAP, XHTML, SMS and
MMS all we need for making mobile users happy? Indeed not. Applications deployed on the client can
offer a richer set of features to both developer and end user, and have the added benefit of being useful
even when not connected to the network. However, updates are more difficult because there are so many
different mobile device platforms. A centrally managed repository of content and applications solves the
problem of deploying to a wide variety of devices.

2 Vipera Provisioning Server – Concepts
The Vipera provisioning server is a hosted JSR 124 server, that's why we also call it the provisioning
portal. No special software needs to be installed by content providers in order to take advantage of Vipera
provisioning server. Instead, content providers obtain a user name and password for logging into the
Vipera provisioning server. Via an HTML web interface, content providers can create their project
repositories, upload JSR 124 bundles, deliver bundles to end users via WAP Push, monitor incoming
download requests, etc.

The Vipera server is for delivering J2ME applications, regardless of whether those applications are Vipera
enabled or not. Provisioning of other type of content (ring tones, wallpapers, etc.) is currently not
supported.

4

2.1 Provisioning Use Cases

5

Illustration 1: Architecture and Use Cases

Agents Use Cases

Content consumers
(end users)

Browse online catalog of available application
bundles (using HTML or WML browser)

Pick an application bundle

Download application bundle optimized for device
type (via browser on the device)

Invite other users to try out the application

Content providers
(ISVs or J2ME developers)

Request creation of account on Vipera provisioning
server

Log into Vipera provisioning server account

Create project repository

Upload JSR 124 provisioning archive (PAR) into
repository

Deliver application bundles to mobile phones, via
WAP Push

Analyze HTTP headers of download requests

Optimize deployment descriptor of provisioning
archive

3rd party portal Trigger delivery of an application bundle to a mobile
user (via HTTP POST request)

Customize the bundle on-the-fly, by adding JAD
key/value pairs, Vipera address, Vipera password
etc. to the application being downloaded

Table 1: Use Cases.

2.2 Provisioning Process
The provisioning process can be broken down into three tasks:

• Stocking: managing the repository; adding and removing J2ME application bundles

• Discovery: finding out what bundles are available for delivery from the provisioning server

• Delivery: delivering the application bundle to the client.

2.2.1 Stocking
Stocking is the process of a content provider uploading a J2ME provisioning archive (PAR) to the portal. A
provisioning archive is a ZIP archive bearing the suffix .par, it includes one ore more client bundles, plus
a deployment descriptor named provisioning.xml.

A client bundle consists of one MIDlet, along with icons etc. that can be used by the provisioning server to
display the bundle in online catalogs. A simple PAR file might have a directory structure like this:
META-INF/provisioning.xml
/HelloWorld.jar
/HelloWorld.jad
/HelloWorld_icon.gif
/COPYRIGHT.txt

The provisioning.xml file might look something like this:
<provisioning-archive ...>
 <tool-descriptions>
 <description>Hello World bundle</description>

6

 <display-name>Hello World bundle</display-name>
 <icon mime-type="image/gif">HelloWorld_icon.gif </icon>
 </tool-descriptions>

 <client-bundle>
 <content-id>http://www.vipera.com/helloworld</content-id>
 <version>1.1.0</version>
 <bundle-type>APPLICATION</bundle-type>
 <descriptor-file>HelloWorld.jad</descriptor-file>

 <tool-descriptions>
 <description>
 A MIDlet to demonstrate the Vipera provisioning server
 </description>
 <display-name>Hello World MIDlet</display-name>
 <icon mime-type="image/gif">HelloWorld_icon.gif </icon>
 </tool-descriptions>

 <user-descriptions>
 <display-name>Hello World MIDlet</display-name>
 <description>
 A MIDlet to demonstrate the Vipera provisioning server
 </description>
 <icon mime-type="image/gif">HelloWorld_icon.gif </icon>
 </user-descriptions>

 <vendor-info>
 <vendor-name>Vipera Inc.</vendor-name>
 </vendor-info>

 <copyright>/COPYRIGHT.txt</copyright>

 <device-requirement>
 <requirement-name>
 SoftwarePlatform.JavaPlatform
 </requirement-name>
 <requirement-value>MIDP/1.0</requirement-value>
 </device-requirement>
 </client-bundle>
</provisioning-archive>

If you wish to include variants of HelloWorld optimized for particular devices, you will create appropriate
JAD/JAR files and add accordingly further <client-bundle> declarations to provisioning.xml.

Now that you have stocked the provisioning server with content, you probably want clients to begin finding
out what's available on your server. That process is called discovery.

2.2.2 Discovery
The discovery process presents a list of available applications based on a query from a client. For that the
client opens the URL http://ota.vipera.com/ from an HTML or WML browser. The Vipera
provisioning server automatically detects the browser type (HTML or WAP) and produces the appropriate
markup pages. The discovery process results in the production of a URI the client device may request to
initiate delivery of a particular bundle.

7

2.2.3 Delivery
The delivery process deals with picking from a provisioning archive the client bundle matching the device
capabilities. The <device-requirement> block in the provisioning.xml defines restrictions
regarding the device types a client bundle can be delivered to.

The devices.xml file of the provisioning portal acts as a database of device capabilities. Device
capabilities are included in the <device> XML blocks. Request-to-device mapping is performed via the
<device-mapping> XML blocks:
<device>
 <!-- Motorola i95cl -->
 <identifier>Motorola/i95cl</identifier>
 <adapter-name>midp</adapter-name>

 <capability>
 <capability-name>HardwarePlatform.ScreenSize</capability-name>
 <capability-value>120x160</capability-value>
 </capability>

 <capability>
 <capability-name>HardwarePlatform.BitsPerPixel</capability-name>
 <capability-value>8</capability-value>
 </capability>

 <capability>
 <capability-name>SoftwarePlatform.JavaPlatform</capability-name>
 <capability-value>MIDP/1.0</capability-value>
 </capability>

 <capability>
 <capability-name>SoftwarePlatform.JavaProtocol</capability-name>
 <capability-value>
 comm, socket, https, ssl, datagram, file
 </capability-value>
 </capability>
</device>

...

<device-mapping>
 <identifier>Motorola/i95cl</identifier>

 <request-mapping>
 <header-name>user-agent</header-name>
 <header-value>Motorola/i95cl</header-value>

8

Illustration 2: Catalog browsing
through WAP / WML

 </request-mapping>
</device-mapping>

...

No matter whether a client bundle is downloaded from an HTML or WAP/WML browser, or via WAP-
Push, the client device will always request the JAD file through HTTP. The provisioning server looks at the
user-agent HTTP header and iterates over all the <device-mapping> blocks. The request-mapping
declarations define which user-agent values map to which device identifiers. Once the device has been
matched, the <device> block with the same <identifier> value as in the matched <device-
mapping> block is loaded.

In a second step, the provisioning.xml <device-requirement> blocks are matched against the
device capabilities we just loaded. The resulting client bundle is then delivered to the mobile user.

The matching configuration file, matchers.xml, also plays a key role in determining which bundles are
suitable for a client. This file defines the algorithms that the provisioning server uses to compare bundle
requirements against device capabilities. It can easily be extended to support new capability attributes. For
example, this block of XML from a matchers.xml file defines a matcher for checking screen size:
<matcher>
 <attribute-name>HardwarePlatform.ScreenSize</attribute-name>
 <matcher-class>
 javax.provisioning.matcher.DimensionMatcher
 </matcher-class>

 <init-param>
 <param-name>allMustMatch</param-name>
 <param-value>false</param-value>
 </init-param>
</matcher>

...

9

Illustration 3: Device matching process.

3 Vipera Provisioning Server – Usage
In the last chapter we provided the conceptual background of the JSR 124 specification on which the
Vipera provisioning server is built. This section offers some more hands-on usage instructions for the
various user classes.

3.1 Content Providers and Developers
The use cases for J2ME content providers and developers were defined in section 2.1. Content providers
create PAR bundles and upload them to the provisioning server. First of all, you must log into
http://ora.vipera.com/admin with the user name and password provided to you by Vipera Inc.

The portal repository is structured into user spaces (e.g., jeff has got his personal space in the
repository). A user space can then be subdivided into multiple “projects” by the user himself. PAR bundles
are always uploaded into projects.

3.1.1 Menu Structure

Menu Sub menu Explanation

Projects Create

View

Delete

Create a new project in the user's repository

View projects

Delete a project and all bundles in it

Bundles Deploy

Delete

WAP Push

Upload a bundle into an existing project

Delete a bundle from a project

Deliver a bundle through WAP Push

Logs OTA Log

Header Log

Server log

View HTTP headers of downloads issued so far

Docs Quick Start

Developer

Quick start documentation

Developer documentation

10

Illustration 4: Portal page after logging in with user name "jeff"

Menu Sub menu Explanation

Settings Password Change password

Portal administrators will see a further “Admin” menu with functions for creating and editing users, fo
changing user roles, for administering the device.xml file, etc.

3.1.2 Basic Example
With this example you can practice the deployment and delivery of an application bundle containing a
“Hello World” MIDlet.

1. Docs → Quick Start: download the Hello World bundle to your PC

2. Projects → Create: Create a project called “test”

3. Bundles → Deploy: Upload the Hello World .par file to the “test” project

4. Bundles → WAP Push: select the “test” project and the Hello World bundle. Enter the phone number of
your Java enabled phone. Push the bundle to your phone.

5. Logs Header → Log: After installation, view the HTTP headers transmitted by your mobile device.

3.1.3 More Advanced Example
This is a variation of the last example to show on-the-fly customization of the JAD. First deinstall the Hello
World MIDlet, then go through the steps outlined in 3.1.2 once again but with the following change:

4. Bundles → WAP Push: Set “JAD Property Name” to message and enter some text into the “JAD
Property Value” field. That text will be displayed by the Hello World MIDlet. This works simply because
the MIDlet displays the value of the message JAD property in an LCDUI form.

3.2 Mobile End Users
End users access the provisioning server in two different ways depending on who initiates the installation
of a bundle

• Explicitly, by browsing the portal with an HTML or WML browser

• or implicitly, when a third party initiates the delivery of a bundle via WAP Push.

3.2.1 Browsing the Bundle Catalog
The URL of the catalog is http://ota.vipera.com/. In an HTML browser, the catalog pages are
rendered as follows.

11

3.2.2 Delivery through WAP Push
WAP Push offers greater convenience to end users in that bundles are “pushed” to the device via a
special type of SMS, without need for the user to browse any catalogs. The provisioning process works as
follows.

12

Illustration 5: A catalog web page.

Illustration 7: A catalog web page after opening the link “test”.

Illustration 6: A catalog web page after opening the link “jeff”.

1. A content provider triggers a push delivery of a bundle to a particular mobile phone number. This is
accomplished either manually, through the aforementioned “Bundles → Deploy” menu item, or
programmatically by issuing a HTTP POST request to the Vipera provisioning portal. HTTP POST is
described in the next section.

2. The end user receives a service notification message. Typically through an audible alert (“beep”) or
vibration, analogous to the receipt of a conventional SMS.

3. The user is prompted whether he wants to download and install the application.

4. The user accepts the delivery and the MIDlet is downloaded and installed automatically.

3.3 Integration into 3rd Party Portals
The manually triggered WAP Push of section 3.1.2 is appropriate for testing. For automating the delivery
of client bundles, the Vipera provisioning portal provides an HTTP interface. A third party software
component can issue a properly formatted and authenticated HTTP POST request to the portal, to trigger
the delivery of an application through WAP PUSH.

3.3.1 HTTP Request
The content type of the HTTP POST request must be application/x-www-form-urlencoded
The URL is https://ota.vipera.com/push
A proper Authorization HTTP header must be inserted for “basic” authentication using your portal
user name and password.

The following mandatory and optional HTTP request parameters are supported:

Name Explanation

project Name of the provisioning project as defined on the portal

bundle Name of the bundle as defined on the portal

phone GSM phone number of the target device without any spaces. In international notation,
but without any leading + signs or zeros. Example: 41792126677

Table 2: Mandatory HTTP request parameters.

13

Illustration 8: Delivery through HTTP POST.

Name Explanation

msg Informative message to show to the user as part of the WAP Push request. Example:
“This is the application you requested from the ACME portal”.

jadnameN
jadvalueN

Used to define key/value pairs which will be inserted into the JAD by the portal, just
before the JAD is sent to the client. N is an index number starting at 0.

Example: jadname0=MyProperty, jadvalue0=MyValue
This will insert the line
MyProperty: MyValue
into the JAD.

viperaid
viperapasswd

Vipera address and password. Will automatically be inserted into the vipera.conf
file.

Table 3: Optional HTTP request parameters.

3.3.2 HTTP Response
Upon successful execution of the push request, the HTTP response will bear a status code of 200. Also,
an HTML document with content type text/plain containing the string ok is returned.

On errors a status code different from 200 is returned. The response text/plain document may
contain a string detailing the cause of the error.

4 Terminology
Term Explanation

Provisioning Archive (PAR) An archive containing one or more client bundles as well as a
deployment descriptor XML file

Client Bundle An application that can be delivered to a mobile device. A PAR may
consist of multiple client bundles. We will sometimes use the term
bundle as synonym for provisioning archive.

ISV Independent Software Vendor

J2ME Java-2 Micro Edition

MIDP Mobile Information Device Profile

OTA Over-the-air

14

