etBurner
Networking in 1 Day!

2

NetBurner Development Kit

Mod5213 Programming Guide

Table of Contents

1 INTRODUCTION 4
1.1 DEVELOPMENT KIT CONTENTS ...ttt ettt eet ettt et e et e e et et eeae e e eaaeeeaetesaaeeeaseesaaesenteesaseesaeeesaseesnseesnneesans 4
1.2 THE IMIODB 2713 ..ottt ettt ettt et e et e et eea e e e e e eae st e st e eateea e e aeeaaeeasesatesaeeeaeesneenesnesas 5

1.2.1 ColdFire 5213 ProcessSor BIOCK DiaQramcccoooeoeieoeeeeeeeeeeeeeeeeeeeee e 5
1.2.2 MOAB2TI FEALIUIES. ... e e 5
1.3 APPLYING POWER TO THE IMODSB2T 3.ttt eeee s st e e eeneeeneeneeeeeeeeneeeneeenesaes 6

2 DEVELOPMENT KIT SETUP 6

3 RUNNING THE FACTORY DEMO 7
3.1 SETUP ettt ettt ettt et et ettt et e ettt et et et e et s et e e teerteeat et e e te e bt ete et e eateett et e et e enteerteereenneas 7
3.2 DESCRIPTION OF THE FACTORY DEMO ..ottt ettt ettt eae e sneesaeesneenneans 8
3.3 FACTORY DEMO COMMANDSoeitiiii it eeee et et eeteeeeeeeetteeaeeessesassaesatesstesssessesseessesssesssesssesssensesrsesnsesssesssaseans 8
3.4 APPLICATION SOURCE CODE.......cutitiiieeeeeeeeee ettt eee et eeee e e et e et e eateeaeeetestesatesateeeseseetesaseereesaeeesesanesans 9

4 COMPILE, DOWNLOAD AND RUN AN EXAMPLE PROGRAM 15
41 HARDWARE SETUP ...ttt ettt e et e e e e et e e e e e et e e e aee e et e e eaeeeeateeeaeeesaeeeeaeeeeaneeeeeesaeens 15
4.2 OPEN THE SIMPLEGPIO PROUECT ...ttt ettt ettt e et eseaee s 15
4.3 COMPILE AND DOWNLOAD THE SIMPLEGPIO APPLICATION.eiiiie ittt 17
4.4 SIMPLEGPIO SOURCE CODE ... e et e e e e e e e e e e s eee e 18

5 CREATING YOUR FIRST CUSTOM PROGRAM 19
5.1 USING THE APPWIZARDoiiieiietieeeeeeee ettt ettt ettt eat e et et e e atesatesateeaeeeaseatseaseenseensesseesneeseennesnnesans 19
52 APPWIZARD SOURCE CODE LISTINGooiviiitieitie ettt ettt et ettt ettt e et eateeeaaeseaeeenveeeneeeennes 20
53 USING THE .CPP SOURCE CODE FILE EXTENSIONooiiiiiiiiitieceeeeee ettt ettt ene e ae e s ses 21
5.4 MODIFYING THE APPWIZARD EXAMPLEcutiiiietioet ettt ettt et ettt e e et e et eeaesne e 22

6 DETERMINING FLASH AND SRAM USAGE 23

7 HOW SERIAL FLASH DOWNLOADS WORK 24

8 POLLED AND INTERRUPT DRIVEN SERIAL PORT DRIVERS 25
8.1 POLLED VS. INTERRUPT DRIVEN ...ttt ettt ettt e et e e et e et e e e e e e e e eaeeeeaee e e e eeeeesneens 25
8.2 EXAMPLE SERIAL POLLING AND INTERRUPT DRIVEN PROGRAMS ...ttt eee e 25
8.3 MODIFYING INTERRUPT SERIAL BUFFER VALUES ..ot euvteeeeeeeeeee oot eeeeeeeeeeeereeeeeeeaeeeeseeseeeeeenesenenane 27
8.4 THE NETBURNER SERIAL AP ...t e et e e et e e e e e e e e e eeneeaaeeeneeeeeseesaeenaeenaeens 27

84T OPEN @ SEHAIPOIT ...ttt ettt 27
8.4.2 Check if a Character is Available 10 D8 REAUcccoeeeeeeeeeeeeeeeeeeeeeeeeee e 28
B3 GOEA CRAIACKEN ... e e et 28
8.4.4 WHItE @ CRAIACHET ... e 29
8.4.5 ClOSE @ SEIHAI PO ... e e 29
8.4.6 AsSign @ Serial Port @S SEAIO................ccooeeeieeeeeeeeeeee e 29
8.4.7 ASSIgN @ Serial POrt @S SIACITccocooeoeeeeeeeeeeeeeeee e 30
8.4.8 Create @ Serial File POINTEYccce oo e 30

9 GENERAL PURPOSE I/0 AND THE NETBURNER PIN CLASS 31
9.1 WHICH PINS CAN BE USED AS GPIOT? ...t 32
9.2 WHAT IS THE NETBURNER PIN CLASS? ...ttt ettt eaa e et eaae s eaaeeeaveeenneeennas 32
9.3 PIN CLASS APLTSUMMARY ...ttt ettt ettt ea e te st eeateeateeaseateeaseenseenseeseesneeseennesanesns 33
94 A SIMPLE PIN CLASS GPIO EXAMPLEovoiitiiitee ettt ettt ettt eave s et eae s eaeeenveeenaeeennes 33
9.5 A SIMPLE PIN CLASS SPECIAL FUNCTION EXAMPLEoooviiiiii ettt ettt ettt 34

NetBurner Mod5213 Programming Guide, Rev. 1.0 Page 2

10 ANALOG TO DIGITAL FUNCTIONS 35

10.1 MODS213 A/D CAPABILITIES. ...covivitieteeteeteeeteteeteete ettt ettt eeseeteeteeteetsessessenseseeseeteessessessessenseeseeseesseseersensensenns 35
10.2 THE NETBURNER MODS2T3 AID APttt ettt ettt ena e eneeeaeas 35
T0.3 DEFAULT SAMPLE RATE ..ottt ettt ettt et e et e etseeteeeaseaeenteentesaeeeateeseenseenseenseensesnsesaeas 36
TO.4 APITFUNCTIONS ...ttt ettt ettt ettt ettt e te et e et e eteeeteeebeeeseeateeaseeateeaeeesseeseenteenseeaseesseenseaseas 36
10.5 MOD5213 HARDWARE CONFIGURATIONoeiitiitieuteeteeeteeeteeeteeeteeeteetseeteeeseeeseeseeseeseeeaeeesseeseeseenseesseesseessesseas 36
TO.6 A/D EXAMPLEottt ettt ettt ettt ettt e eteeete et e eat e eteeeteeteeateeaseetseetseebeeeseeteeaseeabeeaeeeateeteeteeateeateerteeneeerean 37
10.7 A/D EXAMPLE SOURCE CODE LISTINGuoeiviitiiiieieeteeete et ettt eee et et e eteeeveeeveeveeteeneeesseeseeseenseenseensesnsesaeas 38
11 NETBURNER UC/OS RTOS 40
11.1 RTOS SYSTEM RESOURCE USAGEooouviitiitieteeeteeeeeee ettt ettt ettt eve et e eaveeneeetsesaseeaseneenneenes 40
11.1.1 TASK STACK SIZE........ccoooeeeeeeeeeeeeeeeeeee et 40
11.1.2 SYSIEM CIOCK TICK......c..oeeeeeeeeeeeeeeeeeeeeee et 40
11.1.3 Maximum NUMDBEI OF TASKS.........c.cooueoeeeeeeeeee ettt 41
11.1.4 TASK PIIOITHIES ... ettt 41
11.1.5 Interrupt Driven SEIal POITSc.ocoooeeeeeeeeeeeeeeee e 41
11.1.6 Building Applications Without the RTOScc.ccooiiiiiiiieeee e 42

NetBurner Mod5213 Programming Guide, Rev. 1.0 Page 3

1 Introduction

The idea behind the Mod5213 development kit is to provide an embedded developer everything
he/she needs to develop 32-bit embedded applications. The Mod5213 is pre-programmed with a
factory demo application you can run right out of the box. The tools installation is quick and easy; just
follow the prompts and the IDE, compiler and software will be installed. No configuration is required.

For those developers that are not familiar with the uC/OS real-time operating system (RTOS), don’t
worry. Use of the RTOS is not required. However, once you see firsthand how easy it is to use in the
NetBurner environment, you may see things differently.

1.1 Development Kit Contents

The NetBurner Mod5213 development kit (NDK) includes:

e A Freescale 5213 microprocessor based module (NetBurner Mod5213)

e A development carrier board for the Mod5213 that includes a power regulator, 4 LED’s, reset
switch, RS-232 level shifters and DB9 connectors. There are pad locations for optional CAN
transceiver and real-time clock.

Integrated Development Environment (IDE)
Real-time operating system (RTOS)

C/C++ Compiler and Linker

Serial cable

12VDC power supply

NetBurner Mod5213 Programming Guide, Rev. 1.0 Page 4

1.2 The Mod5213
1.2.1 ColdFire 5213 Processor Block Diagram

The NetBurner Mod5213 is based on the Freescale ColdFire 5213 microcontroller. A block diagram
of the 5213 is shown below. The signal pins exposed on the Mod5213 come direct from the processor.

JTAG 4-ch 4-ch 32- UART
DMA bit
B A 2-ch UART
PIT
4-ch CAN 2.0B
16-bit
8/4-ch Queued
PWM SPI
8-channel I’c
12bit ADC

V2
ColdFire®
Core

System
Integration

1.2.2 Mod5213 Features

The Mod5213 is based on a 32-bit 66Mhz Freescale ColdFire 5213 processor. Features of this chip
include:
e ColdFire® V2 Core
Temperature range: -40°C to +85°C
63 MIPS @ 66 MHz
MAC Module and HW Divide
Low-power optimization
Standard 40-pin DIP
32 KB SRAM
256 KB Flash
CAN 2.0B controller with 16 message buffers
Three UARTSs with DMA capability
Queued serial peripheral interface (QSPI)
Inter-integrated circuit (I2C) bus controller
Four 32-bit timer channels with DMA capability
Four 16-bit timer channels with capture/compare/PWM
4-channel 16-bit/8-channel 8-bit PWM generator
Two periodic interrupt timers (PITs)
4-channel DMA controller
NetBurner Mod5213 Programming Guide, Rev. 1.0 Page 5

8-channel 12-bit ADC

Up to 33 general-purpose 1/O

System integration (PLL, SW watchdog)

PIN Dimensions: 1.9" x 0.6"

PCB Dimensions: 2.3" x 0.7"

4.5V to 7.5V input to integrated 3.3V regulator
3.3V I/O (not 5V tolerant)

1.3 Applying Power to the Mod5213

The Mod5213 has 2 power pins; one is a regulated 3.3VDC input, and the other isa 4.5 - 7.5 VDC
input. You can power the Mod5213 using either pin, but do not connect power to both at the same
time. The development kit carrier board has it’s own voltage regulator, and supplies regulated
3.3VDC to the 3.3VDC input power pin.

2 Development Kit Setup

This programming guide uses examples based on the Mod5213 and the development kit carrier board.
To run the examples you need to set up your development hardware by connecting power, the serial
port and Mod5213 module. The diagram below shows the proper connections. The serial cable is
connected to serial port 0. The other DB is serial port 1. The Mod5213 must be inserted into the
socket with the card edge connector facing the center of the board. There is a reset button at the top of
the carrier board to the left of the Mod5213.

NetBurner Mod5213 Programming Guide, Rev. 1.0 Page 6

3 Running the Factory Demo
3.1 Setup

The Mod5213 factory demo is pre-programmed into your Mod5213. The demo uses serial port 0 and
the LED display. To run the demo:

Connect power and the serial port as described in the previous section

e (Connect the other end of the serial cable to a serial port on your computer
Run the NetBurner MTTTY program, which can be started from Start -> Programs ->
NetBurner NNDK -> MTTTY, or from the Tools menu in DevC++.

e C(Click on the Flow Control button, and verify the checkboxes for XON/XOFF Output Control,
and XON/XOFF Input Control are checked.

e Select the comm. port, 115,200k baud, and click on the Connect button in MTTTY

e Press the reset button on the carrier board and verify you see the Mod5213 boot message in the
MTTTY window. An example of the message is shown below.

e [fyou do not see the boot message, then check the setup and repeat until the boot message
appears.

B Multi-threaded TTY

File Edit TTY Transfer Help
Part Baud Parity [1ata Bitz Stop Bits ™ Lacal Echa r
| | 115200 =] [More +| |8 EARE v| W DisplayEnors [
- - [CR=:CRAF [
Fant... ‘ Comm Events... ‘ Flow Contral... ‘ Timeouts.. | Dizconnect | W Autowrap r
s
aiting 2sec(s>» to start ‘A’ to abort
tarting MOD5213 Factory Demo Program
————— Main Menu ———
G to toggle enablesdisabhle LED counting seguence
IPin Class Commands:
+/— to select the Mod5213 pin numbher
HsL to set the selected pin High-Low
Z to set the szelected pin to high impediance
I to enahle the drive of the selected pin Copposite of Hi=>
R to read the selected pin state
Mote: The LED pins are:- 25, 26, 27, 28
“
< >
Modem Status Camm Status P ————
[CTS | DSR I RING [RLSDICD) | I CTSHaold | =0OFFHaold [T Char hére: o
[DSRHaold | 0OFF Sent T Chars: |0
[RLSD Hold I EOF Sent R Chars [0

NetBurner Mod5213 Programming Guide, Rev. 1.0 Page 7

3.2 Description of the Factory Demo

The factory demo is an example of a simple application that uses the RTOS and GPIO. The GPIO
functions are based on the NetBurner Pin Class described later in this document. The application will
run two tasks at the same time, one for the carrier board LED display, and the other to process user
commands via the serial port. When the application starts it displays the command menu and the
LEDs will begin their display sequence. The source code is well documented, and is an excellent
example to illustrate programming the Mod5213.

3.3 Factory Demo Commands

The main menu in the MTTTY terminal window shows the valid commands:

Starting MOD5213 Factory Deno Program

————— Main Menu -----
C to toggle enabl e/di sabl e LED counting sequence
Pin C ass Commands:
+/- to select the Mbd5213 pin nunber
HL to set the selected pin Hi gh/Low
Z to set the selected pin to high inpediance
D to enable the drive of the selected pin (opposite of Hiz)
R to read the selected pin state
Not e: The LED pins are: 25, 26, 27, 28

The ‘C’ command tells the LED display task whether or not to update the LEDs. Pressing the ‘C’ key
will toggle between enabling and disabling LED writes.

The remaining commands let you experiment with the GPIO functions of the Mod5213. Use the +/-
keys to select a pin, then set the pin state to high, low, high impedance (disable drive), enable drive or
read the state of the pin as an input. If you disable LED writes with the ‘C’ command, you can write
the GPIO states of pins 25, 26, 27 and 28 high and low, which will turn the LEDs on and off.

NetBurner Mod5213 Programming Guide, Rev. 1.0 Page 8

3.4 Application Source Code

/**

Mbd5213 Factory Denb Program

This programwi |l illustrate howto inplement nmultiple RTOS tasks, use the
Net Burner Pin Class to control GPIO pins, initialize serial ports, and
control the LEDs on the Md5213 devel opnent kit carrier board.

***/

#i ncl ude "predef.h"

#i ncl ude <basi ctypes. h> /1 Include for variable types

#i ncl ude <bsp. h> /1 5213 board support package interface
#i nclude <..\MID5213\system sinb213. h> [/ 5213 structure

#i ncl ude <ucos. h> /1 Include for RTCS functions

#i nclude <snmarttrap. h> /1 NetBurner Smart Trap utility

#i ncl ude <serialirqg.h> /1 Use serial interrupt driver

#i nclude <utils. h> /1 Include for LED wites on carrier board
#i ncl ude <Seri al Update. h> /1 Update flash via serial port

#i ncl ude <constants. h> /1 1Include for constands |ike MAIN PRI O
#i ncl ude <system h> /1 1Include for system functions

#i ncl ude <stdi o. h>

#i ncl ude <pi ns. h> /1 NetBurner Pin C ass

BOOL bLedSequenceEnabl e = TRUE; /1 Enabl e LED display sequence by default

/*
This declaration will tell the C++ conpiler not to "mangle" the function
nane so it can be used in a C program W recommend you rmake all your file
extensions .cpp to take advantage of better error and type checking, even
if you wite only C code.

*/
extern "C'
void UserMain(void *pd);
}
| o o L e e e e e e e e e e e e e eea oo
This will make the LEDs on the carrier board scan in a back and
forth notion.
___ * [
voi d LedScan()
{
static unsigned char position = O;
const unsigned char pattern_array[] =
{ 0x01, 0x02, 0x04, 0x08, 0x04, 0x02 };
if (position >5)
position = 0;
putl eds(pattern_array[position++]);
}

NetBurner Mod5213 Programming Guide, Rev. 1.0 Page 9

This will nmake the LEDs on the carrier board count in binary
... *
voi d LedCount ()
{
static int n = 0; /1 Init count value to O
putl eds(n++); /1 Wite new value to LEDs
}
| o L o e eiedooooo-.
This is a RTOS task that wites to the LEDs on the carrier board.
It will switch between two different |ight sequences.
... *
voi d LedTask(void *p)
{
static int SequenceCount = O; /1 Counts iterations for each LED seq
static BOOL Count Sequence = TRUE; // Selects Count or Scan sequence
while (1) /1 Loop forever
{
/*
Use the RTOS OSTinmeD y() to delay between LED wites. This function
is a "blocking function”, which means it lets lower priority
tasks run while it is delaying. This is extrenely inmportant in a
preemive OS. Since this task is higher priority than UserMin(),
it MJUST bl ock, otherw se UserMain woul d NEVER run
*/
OSTineDl y(TI CKS_PER SECOND / 8); /1 There are 20 ticks per second
if (bLedSequenceEnabl e) /1 Check enable flag
{
if (SequenceCount > 128) /1l After 128 iterations, switch to other seq
{
SequenceCount = O;
Count Sequence = ! Count Sequence;
}
SequenceCount ++;
if (Count Sequence)
LedCount () ;
el se
LedScan();
}
}
}
| F o o e o e maeama

Di splay the command nenu for user conmands

voi d Di spl ayConmmandMenu()
{
iprintf("\r\n----- Main Menu ----- \r\in");
iprintf(" C to toggle enable/disable LED counting sequence\r\n");
iprintf("Pin Cass Conmands:\r\n");
iprintf(" +/- to select the Mod5213 pin nunmber\r\n");
iprintf(" HL to set the selected pin H gh/Lowr\n");
iprintf(" Z to set the selected pin to high inpediance\r\n");

NetBurner Mod5213 Programming Guide, Rev. 1.0 Page 10

iprintf(" D to enable the drive of the selected pin (opposite of
H z)\r\n");

iprintf(" R to read the selected pin state\r\n");

iprintf(" Note: The LED pins are: 25, 26, 27, 28\r\n\r\n");

Process user serial comand input
The conmand processor has the foll owi ng functions:
C = Toggle LED counting task enabl e/ di sable. You may want to disable
LED counting so you can toggle pins 25, 26, 27 and 28 with the
GPl O out put comands and see the LEDs change state.

+/- = Increment/decrement the selected pin nunmber. The selected pin
nunber will respond to the other Pin C ass comrands such as
Hi gh, Low, Hi z and Drive.

D = Enable selected pin's output drive. The pin will output the
state previously selected by Hi gh, Low or Read.

H = Set the selected pin's output to High

L = Set the selected pin's output to Low.
R = Configure the selected pin to be an input and return the val ue
(high or |ow.

Z = Put the selected pin in high inpedance nmode by disabling its
out put drive.

voi d ProcessCommand(char c)

{

static int pinn = 4; /1 Set initial selected pin value at 4

iprintf("Pin[%l]>", pinn); [/ Display selected pin

switch(c)
{
case ' +': /1 Increment the selected pin nunber
pi nn++;
i f(pinn >38) pinn=4;
iprintf("pin# = %\r\n", pinn);
br eak;
case '-': /1 Decrenent the selected pin nunber
pi nn--;
i f(pinn <4) pinn=38;
iprintf("pin# = %\r\n", pinn);
br eak;
case 'C:
case 'c':
bLedSequenceEnabl e = ! bLedSequenceEnabl e;
if (bLedSequenceEnabl e)
i printf("\r\nLED sequence display enabled\r\n");
el se
iprintf("\r\nLED sequence display disabled\r\n");
br eak;

NetBurner Mod5213 Programming Guide, Rev. 1.0 Page 11

case 'D:
case 'd':
Pi ns[pi nn] . functi on(pi nx_GPI O ;
Pi ns[pinn].drive();

iprintf("Pin[%l] = Drive Enabl ed\r\n", pinn);

br eak;
case 'H:
case 'h':

Pi ns[pi nn] . function(pi nx_GPl O ;
Pi ns[pi nn] =1;
iprintf("Pin[%l] = H\r\n", pinn);

br eak;
case 'L':
case '|':
Pi ns[pi nn] . functi on(pi nx_GPI O ;
Pi ns[pi nn] =0;
iprintf("Pin[%l] = Lowr\n", pinn);
br eak;
case 'R :
case 'r':
{
Pi ns[pi nn] . functi on(pi nx_GPI O ;
BOOL b = Pins[pinn];
i f(b)
iprintf("Pin[%l] = reads Hi\r\n", pinn);
el se

iprintf("Pin[%l] = reads Lowr\n", pinn);
}

br eak;
case 'Z':
case 'z':
Pi ns[pi nn] . functi on(pi nx_GPI O ;
Pi ns[pinn]. hiz();
iprintf("Pin[%l] = H z\r\n", pinn);
br eak;
def aul t:

Di spl ayComrandMenu() ;

NetBurner Mod5213 Programming Guide, Rev. 1.0

Page 12

This is the RTOS main task, called UserMain. If you do not want to
use the RTGCS, you could just wite all your code in UserMin(), and
treat it just like a standard C main().

voi d UserMain(void *pd)
{
/*
The following function calls will initialize two of the three
UARTs to a default baud rate of 115,200 baud, 8 data bits, 1
stop bit, no parity. There are other serial functions to cal
to specify additional paraneters. Serial ports are nunbered
o, 1, 2.
*/
Si npl eUart (0, SystenBaud);
SinpleUart(1, SystenBaud);

/* Enable NetBurner Smart Traps Uility */
Enabl eSmart Traps() ;

/*
When UserMain() starts it is a very high priority. Once running,
it is standard practice to reduce it to sonething lower. MAIN PRI O
is equal to a priority of 50. This will enable you to add tasks at
hi gher and | ower priorities if you wi sh.

*/

OSChangePrio(MAIN PRIO);

/*
Create and start the LED counting task. A task is basically just a
function with a priority. In this case, the function/task nane is
LedTask, and its priority is set to one |evel higher than UserMin().
Note that a |l ower nunber is a higher priority. By making the LEDs a
hi gher priority than UserMain(), the LEDs will blink at a constant
rate even during user input and character echo in UserMain().

*/

CSSi npl eTaskCreate(LedTask, MAIN PRIO - 1);

/*
Calling this function enables the flash nmenory updates via the seria
port. Serial updates will work at any tinme when you are using the serial
interrupt driver, but in polled node updates can only occur if the
application is reading fromthe serial port (eg getchar(), read().

*/

Enabl eSeri al Updat e() ;

/* Assign UART O to stdio, so printf(), getchar() are routed there */
assign_stdi o(0);

/1 Wite boot nmessage to stdio, which is serial port O
iprintf("Starting MOD5213 Factory Denp Programir\n");

/!l Wite boot nmessage to serial port 1 using witestring() function,
/1 since this port is not assigned to stdio.
witestring(l, "Greetings fromserial port 1!\r\n");

/1 Loop forever. This is like a C main |l oop. You do not ever want to
/1 return from UserMain().
Di spl ayComandMenu() ;

NetBurner Mod5213 Programming Guide, Rev. 1.0 Page 13

while (1)
{

char ¢ = getchar();
ProcessComand(c);

NetBurner Mod5213 Programming Guide, Rev. 1.0 Page 14

4 Compile, Download and Run an Example Program

In this section we will compile, download and run a simple General Purpose I/O program that blinks
one of the LED’s on the carrier board.

4.1 Hardware Setup

Before working through this exercise, you must make sure that the Mod5213 is connected properly to
your computer and you have RS-232 serial communications. For example, you can run MTTTY and
verify that you see the boot message when you press the reset button on the Mod5213 carrier board.
To start the MTTTY serial terminal program, select Start -> Programs -> NetBurner NNDK ->
MTTTY. You can also start MTTTY from the Tools menu of DevC++.

4.2 Open the SimpleGPIO Project

To begin, lets start DevC++ and load the application. Go to the Windows Start Menu and select Start-
> Programs -> NetBurner NNDK -> DevC++. You should see the program start as shown below:

8 MetBurner Dev-C++ 1.14 E|@|E|

File Edit Search Yiew Project Buld Tools %S ‘Window Help

[]
D = IJE |nzert ﬁ Toggle |!] [oto
| | [~

Froject l Claszes l

EE I:::umpilerl d]]] Compile Lu:-g] @ Find R ezultz

a7 2 [nzert Ready. I

NetBurner Mod5213 Programming Guide, Rev. 1.0 Page 15

There is a project file already created for this example. In DevC++, click on File -> Open Project or
File, and open the file named \nburn\examples\Mod5213\SimpleGPIO.dev. File names that end in
.dev are DevC++ project files. Once you open the project, you should see the Simple GPIO project in
the Project Pane on the left as shown below.

NetBurner Dev-C++ 1.14 - [SimpleGPIO] - SimpleGPIO. dev M=
File Edit Search ‘iew Project Buld Tools CWS Window Help
W=

EE 0« 3 EB ;4 D M @ [nzert ﬁTDggle |!] Goto
| k| [
Project l Elassesl

- SimpleGRI0

mair. cpp

EE I:::umpilerl d]]] Compile Lu:-g] @ Find R ezultz

a7 2 [nzert 34 Linez in file I

NetBurner Mod5213 Programming Guide, Rev. 1.0 Page 16

Now click on “main.cpp” in the Project pane to open the main.cpp source code file in the edit
window.

B NetBurner Dev-C++ 1.14 - [SimpleGPIO] - SimpleGPIO. dev M=
Eile Edit Search Yiew Project Buld Tools WS Window Help

00 @& & B EB H
EE E Qf E ES & DNEW Emlnsert ﬁTaggle |!]Gn:|tn:|
| =l [~

Project l |:|aggegl main. cpp l
=15 SimpleGPIO A e »
rnair. cpp Thizs is the RET0OS main task, called UserMain., I vou o

use the ETOS, vou could jusié write 3211 veour code in 0
tredt it Just Jike 2 standard © main().

void UserMain| woid *pd)
i
SimwpleUart | O, SystewBaud 1: Y imitiglize UART O

Enahlel3martTraps () : A5 enable amart trap
O3ChangePrio [MAIN PRIC) A5 set standard UserM
EnableSerisalUpdate (] A5 enakle serial upda
aszign_stdio(O): A use TART 0 For std

iprintf ("Starting SimpleSPI0 Examplhrchn™)

while [1)

i
A5 Configure pin 25 33 an output and set it to O
A5 to a8 LED on the ModEz13 carrier board, so vou
Pins[25] = 0O:
OSTimeDly | TICKS PER SECOMND / 2): v

EE Eu:umpilerl dﬂ] Compile Lu:ug] @ Find Resultz

47 2 [nzert 34 Linesz in file

4.3 Compile and Download the SimpleGPIO Application

Before reviewing the source code, let’s compile and run the example program. This can be done with
a single command. From the DevC++ main menu, select Build -> Compile & Load. As long as the
application running on the Mod5213 has the EnableSerialUpdate() function, the NetBurner tools will
automatically download the new application and program the flash memory in the Mod5213. After
executing the Compile & Load command, you should see a quick progress bar as the file is
downloaded into the device, then the boot message should appear on MTTTY as the Mod5213
reboots with the new application. One of the LED’s should now be blinking.

NetBurner Mod5213 Programming Guide, Rev. 1.0 Page 17

4.4 SimpleGPIO Source Code

/**

Sinple GPIO programusing the Pin d ass

***/

#i ncl ude "predef.h"

#i ncl ude <basi ctypes. h> /1 I'nclude for variable types
#i ncl ude <bsp. h> /1 5213 board support package interface
#i nclude <..\MOD5213\system sinb213. h> // 5213 structure
#i ncl ude <ucos. h> /1 Include for RTOS functions
#i nclude <serialirq. h> /1 Use UART interrupts instead of polling
#i ncl ude <utils.h> /1 Include for LED wites on carrier board
#i ncl ude <Seri al Update. h> /1 Update flash via serial port
#i ncl ude <snmarttrap. h> /1 NetBurner Smart Trap ability
#i ncl ude <constants. h> /1 I'nclude for constands |ike MAIN_PRI O
#i ncl ude <system h> /1 Include for system functions
#i ncl ude <pins. h> /1 Include for Pin C ass AP
extern "C'
void UserMain(void *pd); /'l prevent C++ nane mangling
}
2

This is the RTOS nmain task, called UserMain. If you do not want to
use the RTCS, you could just wite all your code in UserMin(), and
treat it just like a standard C main().

___ */
void UserMain(void *pd)
{
SinpleUart(O, SystenBaud); // initialize UART O
Enabl eSmart Tr aps() ; /1 enable smart trap utility
OSChangePrio(MAIN PRIO); /1 set standard UserMain task priority
Enabl eSeri al Updat e() ; /1 enabl e serial updates
assign_stdio(0); /1 use UART O for stdio
iprintf("Starting SinpleGPlO Exanpl\r\n");
while (1)
/1 Configure pin 25 as an output and set it to 0. This pin is connected
/! to a LED on the Md5213 carrier board, so you can watch it blink.
Pins[25] = O;
OSTi neDl y(TI CKS_PER SECOND / 2);
/1 set pin 25 toal
Pi ns[25] = 1;
OSTi neDl y(TI CKS_PER SECOND / 2);
int n = Pins[4]; /1 read current value of pin 4 as an input
iprintf("Pin[4] input value = %\r\n", n);
}
}

NetBurner Mod5213 Programming Guide, Rev. 1.0 Page 18

5 Creating Your First Custom Program

5.1 Using the AppWizard

A very fast way to create a minimal application is to use the DevC++ AppWizard. From the DevC++
main menu, select File -> New -> AppWizard. A dialog box with options will appear:

& New Project g@@

Project Ahpplication MNarme: Platformm; |Default j

Create in Directary: |E:'\N burnt.examplesiMewdpp Choose..

Optiong are Platform Specific

[v [nclude Autollpdate capability [Include 'WAIFI [Include TazkScan
[[v Include WebServer
[v Include DHCP [Include SmartT raps
Create Cancel

Depending on your installed platform, a number of options can appear. In the dialog box above,
multiple NetBurner platforms are installed, and the default platform supports networking. In our case
we will rename the application name to NewApp5213, and change the platform to Mod5213. These
changes will result in the dialog box below:

New Project [ZI[EIF‘S_TI

Froject Japplication Mame: |Net-hl.-’-'-.|:||:|5213 Platformm: |MDD5213 ﬂ

Create in Directony: |E:'\N burnexampleshMewdpph213 Choose..

Options are Platform Specific

[+ B B
[v Include Serialload capability [
rd [Include SmartTraps

Create Cancel

NetBurner Mod5213 Programming Guide, Rev. 1.0 Page 19

As you can see, the options are now Mod5213 specific. For this example, let’s just use the SerialLoad
capability to enable flash updates through the serial port. Once the option is selected, click on the
Create button to create the source code and project. You should now see a project and source window
like the one below:

NetBurner, Dev-C++ 1.14 - [NewApp5213 | - NewApp5213.dev
File Edit Search Yiew Project Buld Tools CVS Window Help

HEE%# & <+ [cQeg QL=
EEEWEEE% DNew @Insert ﬁToggle |!]Goto

| | [

PlDiBCt l |:|agses] [K] main-Cpp l

- MewsppS213 e —
mair. cpp Application generated by AppWizard

fiinclude "predef.h”
finclude <stdio.h>
#include <ctype.h>
fiinclude <hasictypes.h>
f#include <serialirg.hs>
fiinclude <system. h>
fiinclude <constants.hs
#include <ucos.h>
fiinclude <Seriallpdate. h>

S Instruct the C++ compiler not to margle the function name
extern "C" |
void UserMain(void * pd);

/S Name for development tools to identify this application
const char * AppName="NewlippSZ137;

A Main task
void UserMainivoid * pd)
{
O3ChangePrio (MAIN PRIO);

EE Enmpiler] |ﬂ:|] Conpile Lu:ug] @ Fird Resgultz

1:1 Modified Inzert 37 Lines in file

5.2 AppWizard Source Code Listing

The source code generated by the AppWizard is shown on the following pages. It creates an
application shell consisting of a UserMain() task, the ability to handle a serial flash update, and serial
communications on UART 0. The while(1) loop is where we will add our custom application code.
Any system initialization or creation of other tasks usually takes place before the while(1) loop, such
as serial port initialization, task priority and enabling serial updates.

NetBurner Mod5213 Programming Guide, Rev. 1.0 Page 20

If you do not want to do any RTOS programming, you can simply write all your application code
inside UserMain(). The preemptive RTOS will not waste any CPU cycles if you do not have other
tasks, and you will be able to take advantage of the serial port drivers and serial port flash updates.

In the example you may notice that iprintf() is used instead of printf(). The ‘i’ stands for “integer”.
By using iprintf() you can avoid linking in the floating point support that printf() requires, and save
30k — 40k bytes of code space.

#i ncl ude "predef.h"

#i ncl ude <stdio. h>

#i ncl ude <ctype. h>

#i ncl ude <basi ctypes. h>
#i nclude <serialirqg. h>

#i ncl ude <system h>

#i ncl ude <constants. h>

#i ncl ude <ucos. h>

#i ncl ude <Seri al Update. h>

/1 Instruct the C++ conpiler not to mangle the function name
extern "C'

voi d UserMain(void *pd);
}

/1 Name for devel opnent tools to identify this application
const char * AppName = "NewApp5213";

/1 Main task
void UserMain(void *pd)

{
OSChangePrio(MAIN PRIO);

Enabl eSeri al Updat e() ;

Si npl eUart (0, SystenBaud);
assign_stdio(0);

iprintf("Application started\r\n");
while (1)

OSTi neDl y(TI CKS_PER_SECOND) ;

}
}

5.3 Using the .cpp Source Code File Extension

Even if you do not intend to use any C++ source code, it is recommended you use the .cpp file
extensions to take advantage of the enhanced error and type checking. It will also enable you to use
NetBurner APIs that do rely on C++.

NetBurner Mod5213 Programming Guide, Rev. 1.0 Page 21

5.4 Modifying the AppWizard Example

Now lets modify the AppWizard example and run it. The changes are highlighted in bold. To access
the LEDs on the carrier board we need to add #include <utils.h>. Variable initialization and changes
to the while (1) loop are shown below.

#i ncl ude <utils. h>

int n=0;
while (1)
{

iprintf(“1 ama Md5213!'\r\n”);
putleds(n++);
OSTi neDl y(TI CKS_PER_SECOND) ;

}

Once you have made the changes, select Compile & Load (from the main menu, the icon under the
main menu, or by pressing the F9 key). When the application runs you should see the text scrolling by
and LED’s counting once per second.

NetBurner Mod5213 Programming Guide, Rev. 1.0 Page 22

6 Determining Flash and SRAM Usage

Each time you compile an application, the amount of flash memory used is displayed in the output
window. If your application attempts to use more flash or SRAM than is physically available, a
warning will be generated.

An example output of an application that uses 38k of flash is shown below:

Block starts at ffc04010
Block ends at ffc0db40
Block size = 38k (39728 bytes)

To determine SRAM usage you will need to look at the .map file generated in your project directory.
The map file will show the SRAM based variables by name and address. An example map file with
the intermediate variables removed is shown below:

*(. dat a)
.data 0x20000400 0x4 ../ n68k-el f/lib/nb206e/crt0.o0

<< internediate variables omtted in this exanmple >>

0x200025d0 _end = _end

SRAM usage includes the .data and .bss sections. A simple way to determine the memory used is to
locate the *(.data) label, and the end = end label. The amount of memory used is the difference
between the two hexadecimal numbers. The above example is from an application that uses the
RTOS, Pin Class, and interrupt driven serial I/O:

0x200025d0 - 0x20000400 = 0x21D0 = 8, 656 bhytes.

Typical application sizes can range from 9k bytes of flash space for minimal implementations that do
not use the RTOS or library calls like printf(), to 40k bytes in applications that use the RTOS, stdio,
and library calls like iprintf(). Since the Mod5213 has 256k bytes of flash space, you have plenty of
room! Typical SRAM usage can range from 1.5k bytes to 8k bytes for a full featured application with
interrupt driven serial I/O with associated memory buffers.

NetBurner Mod5213 Programming Guide, Rev. 1.0 Page 23

7 How Serial Flash Downloads Work

The serial flash download to the Mod5213 is a very useful tool. To enable this capability, your
application must include the header file #include <SerialUpdate.h>, and call the function
EnableSerialUpdate(). The NetBurner application code will listen on all serial ports for incoming
updates, and process the update if the proper command sequence is sent. This is a preemptive feature,
and you application can freely use this serial port for any purpose you wish.

When executing a serial update, DevC++ will attempt to gain access to a serial port on your PC. If no
applications are running that are using a serial port the update will open the serial port, do the update,
and close the serial port. MTTTY has been written to be cooperative with the serial update utility. If
MTTTY is running on a serial port, the serial update utility will run the update through MTTTY.
However, if you have any other program or serial terminal (eg Windows HyperTerminal) using a
serial port, the serial update utility will not be able to use that port.

For those who want to use polled serial I/O, you need to remember that the serial update will only
work if there is a blocking call to a serial input, such as getchar() or read(). If you are using interrupt
driven I/O, then this is not an issue.

The monitor program also support serial downloads, so if you are developing an application that is

repeatedly crashing, you can enter the monitor at the prompt by typing an ‘A’, and then proceed with
a serial update in the normal manor (e.g. Compile & Load in DevC++).

NetBurner Mod5213 Programming Guide, Rev. 1.0 Page 24

8 Polled and Interrupt Driven Serial Port Drivers

8.1 Polled vs. Interrupt Driven

The NetBurner API provides two types of serial interfaces for the Mod5213 onboard UARTS: polled
and interrupt driven. You can switch between either mode easily just by changing an include file in
your application; the application function calls are identical.

Polling means that any time your application attempts a serial read or write, the underlying code will
block until a character can be read or written. This is accomplished by polling a status bit in the
UART registers. The advantage of polling is that it takes up less SRAM resources than an interrupt
driven scheme, since the serial I/O is not buffered.

Interrupt driven means that the serial I/O is buffered so your application does not have to wait for the
actual I/O to occur. It also means the application will not miss any incoming characters because it is
busy elsewhere. Unless you are constrained on SRAM space, interrupt driven serial I/O is
recommended.

8.2 Example Serial Polling and Interrupt Driven Programs

If we look back at the AppWizard generated application, we can see that it uses interrupt driven serial
I/0, shown in bold below:

#i ncl ude "predef.h"

#i ncl ude <stdio. h>

#i ncl ude <ctype. h>

#i ncl ude <basi ctypes. h>
#i nclude <serialirq. h>

#i ncl ude <system h>

#i ncl ude <constants. h>

#i ncl ude <ucos. h>

#i ncl ude <Seri al Update. h>

/1 Instruct the C++ conpiler not to nmangle the function nane
extern "C'

{
}

/1 Nanme for devel opment tools to identify this application
const char * AppNane = "NewApp5213";

voi d UserMain(void *pd);

/1 Main task
void UserMain(void *pd)

OSChangePrio(MAIN_PRIO);
Enabl eSeri al Updat e() ;

NetBurner Mod5213 Programming Guide, Rev. 1.0 Page 25

Si npl eUart (0, SystenBaud);
assign_stdio(0);

iprintf("Application started\r\n");
while (1)

OSTi meDl y(TI CKS_PER_SECOND) ;

We can covert this to polled serial I/O just by changing the include file. However, if we want the
serial flash update utility to work, we need to be looking for (polling) any incoming characters. The
code to do this has been added to UserMain() and highlighted in bold:

#i ncl ude "predef.h"

#i ncl ude <stdio. h>

#i ncl ude <ctype. h>

#i ncl ude <basi ctypes. h>
#i ncl ude <seri al pol | . h>
#i ncl ude <system h>

#i ncl ude <constants. h>

#i ncl ude <ucos. h>

#i ncl ude <Seri al Updat e. h>

/1 Instruct the C++ conpiler not to nmangle the function name
extern "C'

void UserMain(void *pd);
}

/1 Name for devel opment tools to identify this application
const char * AppNane = "NewApp5213";

/1 Main task

void UserMain(void *pd)

{
OSChangePrio(MAIN_PRIO);
Enabl eSeri al Updat e() ;
Si nmpl eUart (0, SystenBaud);
assign_stdio(0);
iprintf("Application started\r\n");
while (1)

if (charavail(0)) /1 check for I/O on UART O

char ¢ = getchar();
OSTi meDl y(Tl CKS_PER_SECOND) ;

NetBurner Mod5213 Programming Guide, Rev. 1.0 Page 26

8.3 Modifying Interrupt Serial Buffer Values

The serial I/O buffer sizes for the Mod5213 are located in \nburn\include nn\constants.h, and are
shown below. I have included all the definitions in the header file so you can see other system
parameters as well.

#defi ne TI CKS_PER_SECOND (20) /* Systemclock tick */
#defi ne OS_MAX _TASKS 20 /* Max nunber of systemtasks */

/* IDLE task is set at |owest priority, 63 */

#define MAIN_PRI O (50) /* used for UserMiin() */
#define | DLE_STK_SI ZE (256)

#defi ne USER_TASK STK_SI ZE (512)

#define SERI ALO_RX_BUFFER Sl ZE (256)
#define SERI ALO_TX_BUFFER S| ZE (256)

#defi ne SERI AL1_RX_BUFFER_SI ZE (256)
#define SERI AL1_TX BUFFER _SI ZE (256)

#defi ne SERI AL2_RX_BUFFER_SI ZE (256)
#defi ne SERI AL2_TX_BUFFER_SI ZE (256)

As you can see, the default buffer sizes for each of the three UARTS is 256 bytes for transmit and
receive. The total memory used is 256 * 6 = 1,536 bytes of SRAM. You can change these value to
increase or reduce buffer size. After making a change you need to recompile the system library. This
is easily done in DevC++ by selecting Build -> Rebuild All, then compiling your project with
Compile or Compile & Load.

8.4 The NetBurner Serial API

The following sections describe the NetBurner Serial API calls. All these functions can be run in
polled or interrupt driven mode by changing the include file as described earlier in this chapter. Each
API call has the underlying polled and interrupt driven functions defined.

8.4.1 Open a Serial Port

The following function calls are used to initialize a serial port. The “simple” version assumes default
values for the most common parameters.

int InitUart(int portnum /1 UART port nunber 0, 1 or 2
unsi gned int baudrate, // Baud rate: 1200 - 115, 200
int stop_bits, /1 1 or 2
int data_bits, /1 7 or 8
parity_node parity); [/ eParityNone, eParityQdd, eParityEven,
eParityMul ti

NetBurner Mod5213 Programming Guide, Rev. 1.0 Page 27

int SinpleUart(int portnum /1 UART port nunber 0, 1 or 2
unsi gned in baudrate); // Baud rate: 1200 - 115, 200

SimpleUart() will use 1 stop bit, 8 data bits and no parity.
Return Values:

0 on Success

SERIAL ERR NOSUCH PORT

SERIAL ERR PORT ALREADYOPEN
SERIAL ERR_PARAM ERROR

Polled version: Calls InitPolledUart().
Interrupt version: Calls InitIRQUart().

When using interrupt driven I/O, the serial buffer sizes are defined in \nburn\include nn\constants.h.

8.4.2 Check if a Character is Available to be Read
BOOL charavail (int portnum); /1 0, 1 or 2
Returns true if a char is available to be read.

Polled version: Calls Polled charaval().
Interrupt version: Calls IRQ_charavail().

8.4.3 Get a Character

char sgetchar(int portnum); /1 0, 1 or 2
This function will block until a character is available to be read.

Polled version: Calls Polled getchar().
Interrupt version: Calls IRQ getchar().

Important: The polled version does not yield to the RTOS, so no lower priority task can run. The IRQ
version will yield to the RTOS until a char is available.

NetBurner Mod5213 Programming Guide, Rev. 1.0 Page 28

8.4.4 Write a Character

void witechar(int portnum /1 0, 1 or 2
char c); /1 character to wite
void witestring(int portnum /1 0, 1 or 2
const char * s); /1 pointer to a string to wite

Where portnum is the port number 0, 1 or 2. The variable s is a pointer to a constant string to be
sent.

Polled version: Calls Polled write()
Interrupt version: Calls IRQ_write()

Both of these functions will block until at least one character can be written.

8.4.5 Close a Serial Port

void close(int portnum); /1 0, 1 or 2
Polled version: Calls Polled close().

Interrupt version: Calls IRQ _close().

8.4.6 Assign a Serial Port as Stdio

voi d assign_stdio(int portnum); /1 0, 1 or 2

This function will enable you to use stdio calls with the specified serial port, such as iprintf(),
printf(), iscanf() and scanf{().

Polled version: Calls Polled assign_stdio().
Interrupt version: Calls IRQ assign_stdio().

NetBurner Mod5213 Programming Guide, Rev. 1.0 Page 29

8.4.7 Assign a Serial Port as Stderr

void assign_sterr(int portnum); /1 0, 1 or 2

This function allows you to use standard error I/O with the specified serial port, such as
fprintf(stderr, ...), fscanf(stderr, ...), etc....

Polled version: Calls Polled assign_sterr().
Interrupt version: Calls IRQ assign_sterr().

8.4.8 Create a Serial File Pointer

FILE * fp = create _file(int portnum); /1 0, 1 or 2

Creates a pointer of type FILE that can be used to read and write to serial port with functions that take
file pointers as parameters, such as: fprintf(), fscanf(), etc...

For example,

FILE * fp = create_file(1); /1 create a FILE pointer for UART 1
fprintf(fp, "This goes out port 1\r\n"); /1l wite string
fclose(fp);

Polled version: Calls Polled create file().
Interrupt version: Calls IRQ _create file().

NetBurner Mod5213 Programming Guide, Rev. 1.0 Page 30

9 General Purpose I/0 and the NetBurner Pin Class

The pins on the two 20 pin headers on the Mod5213 consist mostly of signal pins that can be set to a
special function or GPIO, two power pins and a ground pin. Each signal pin can be set to a special
function or GPIO. For example, pin 4 can be set to GPIO, QSPI Clock, CAN transmit or UART 2
transmit. When using a pin as GPIO, you can configure it as an input, or an output that can be set
high, low or high impedance. The table below summarizes the functions of each pin. Each NetBurner
platform that supports the Pin Class will have its own definition file located in
\nburn\<platform>\include\pincostant.h.

Can this
Connector be used GPIO . . 1st Alternate 2nd Alternate
Pin as Function Primary Function Function Function
GPIO?

1 No - Reset input - -

2 Yes PIN2_GPIO PIN2_UARTO_RX - -

3 Yes PIN3_GPIO PIN3_UARTO_TX - -

4 Yes PIN4_GPIO PIN4_SCL PIN4_CANTX PIN4_UART2_TX
5 Yes PIN5_GPIO PIN5_SDA PIN5_CANRX PIN5_UART2_RX
6 Yes PING6_GPIO PING6_IRQ1 PING6_SYNCA PING_PWM1
7 Yes PIN7_GPIO PIN7_IRQ4 - -

8 Yes PINS_GPIO PIN8_IRQ7 - -

9 No - VDDA - -

10 No - VRH - -

11 Yes PIN11_GPIO PIN11_AN2 - -

12 Yes PIN12_GPIO PIN12_AN1 - -

13 Yes PIN13_GPIO PIN13_ANO - -

14 Yes PIN14_GPIO PIN14_AN3 - -

15 Yes PIN15_GPIO PIN15_AN7 - -

16 Yes PIN16_GPIO PIN16_ANG6 - -

17 Yes PIN17_GPIO PIN17_ANS5 - -

18 Yes PIN18_GPIO PIN18_AN4 - -

19 No - VSSA/VRI - -
20 No - Ground - -
21 Yes PIN21_GPIO PIN21_DTIN3 PIN21_DTOUT3 PIN21_PWMO6
22 Yes PIN22_GPIO PIN22_DTIN2 PIN22_DTOUT?2 PIN22_PWM4
23 Yes PIN23_GPIO PIN23_DTIN1 PIN23_DTOUT1 PIN23_PWM2
24 Yes PIN24_GPIO PIN24_DTINO PIN24_DTOUTO PIN24_PWMO

NetBurner Mod5213 Programming Guide, Rev. 1.0 Page 31

25 Yes PIN25_GPIO PIN25_GPT3 - PIN25_PWM7

26 Yes PIN26_GPIO PIN26_GPT2 - PIN26_PWM5

27 Yes PIN27_GPIO PIN27_GPT1 - PIN27_PWM3

28 Yes PIN28_GPIO PIN28_GPTO - PIN28_PWM1

29 Yes PIN29_GPIO PIN29_UART1_RX - =

30 Yes PIN30_GPIO PIN30_UART1_TX - -

31 Yes PIN31_GPIO PIN31_UART1_CTS PIN31_SYNCA PIN31_UART2_RX
32 Yes PIN32_GPIO PIN32_UART1_RTS PIN32_SYNCA PIN32_UART2_RX
33 Yes PIN33_GPIO PIN33_QSPI_CS2 - -

34 Yes PIN34_GPIO PIN34_QSPI_CS1 - -

35 Yes PIN35_GPIO PIN35_QSPI_CSO0 PIN35_SDA PIN35_UART1_CTS
36 Yes PIN36_GPIO PIN36_QSPI_DOUT PIN36_CANTX PIN36_UART1_TX
37 Yes PIN37_GPIO PIN37_QSPI_DIN PIN37_CANRX PIN37_UART1_RX
38 Yes PIN38_GPIO PIN38_QSPI_CLK PIN38_SCL PIN38_UART1_RTS
39 No - VDD (3.3VDC) - -

Unregulated Input
40 No - Power, 4VDC — - -
7VDC

Note the descriptions in each of the fields above. They represent the actual definitions that can be used
to configure each pin if you choose to use the NetBurner Pin Class. These definitions are located in
the header file: \nburn\Mod5213\include\pinconstants.h.

9.1 Which Pins Can Be Used as GPIO?

The signal pin description chart in the previous section specifies which pins can be used as GPIO. In
addition to the pins specified as “No” in the GPIO column, you should not use pin 2 or pin 3, since
they are the UART 0 receive and transmit signals. You will need these for the Mod5213 monitor
interface.

9.2 What is the NetBurner Pin Class?

As you can see from the pin function table, each pin can be used for a number of purposes. To
configure a pin for a specific purpose, an application must know what registers need to be
programmed in the 5213 processor. Rather than make everyone read the extensive ColdFire 5213
manual, we have created the Pin Class to make configuration and operation much easier. Although the
Pin Class is written in C++, you do not need to know any C++ to use it; your application can be
written using only C syntax.

NetBurner Mod5213 Programming Guide, Rev. 1.0 Page 32

Note that you do not need to use the Pin Class. If you prefer to handle the configuration and
management yourself, you are free to do so. If you do not include any Pin Class function calls, none
of the Pin Class code will be linked to your application. The Pin Class is a very efficient
implementation with performance that will meet most requirements. It is so simple to use, you may
want to give it a try for a quick benchmark before writing your own configuration code.

9.3 Pin Class APl Summary

The following sections will describe the Pin Class API functions.

To read, write or configure a pin where ‘x’ is the pin number:

Pins[x] = O; /1 set GPIO output |ow

Pins[x] = 1; /1 set GPIO output high

Pins[x].hiz(); /1 set GPIO to high inpedance (tristate)
Pins[x].drive(); /1 turn on GPI O out put

int n = Pins[x]; /1 read GPIOinput and return integer

BOOL b = Pins[x]; // read GPIO input and return bool ean

Pins[x].function(function); [// configure pin for special function

The value of “function” in the function() call above is the definition in the previous Primary and
Alternate function table. For example, to configure pins 4 and 5 as the CAN interface:

Pins[4].function(Pl NA_CANTX);
Pi ns[5] . function(PIN5_CANRX);

9.4 A Simple Pin Class GPIO Example

The following example illustrates how to read and write signal pins that can be used as GPIO. In this
example output pin 25 is used since it is connected to a LED on the carrier board. This way we can
see the state of the pin as the LED turns on and off. For an input we use pin 4. We cannot
automatically change the state of the input pin, so it will always read 0. The program runs in a loop
that toggles the output state each /2 second, and reads the input once per second.

void UserMain(void *pd)

{
SinpleUart(0, SystenBaud); // initialize UART O
Enabl eSmart Traps() ; /1 enable smart trap utility
OSChangePrio(MAIN PRIO); /1 set standard UserMain task priority
Enabl eSeri al Updat e() ; /'l enable serial updates
assign_stdio(0); /1 use UART O for stdio

iprintf("Starting SinpleGPlO Example\r\n");

NetBurner Mod5213 Programming Guide, Rev. 1.0 Page 33

while (1)

{
/1 Configure pin 25 as an output and set it to 0. This pin is connected
/! to a LED on the Mbd5213 carrier board, so you can watch it blink.
Pins[25] = O;
OSTi meDl y(TI CKS_PER_SECOND / 2);
/] set pin 25 to a 1, LED should Iight
Pi ns[25] = 1;
OSTi meDl y(TI CKS_PER SECOND / 2);
int n = Pins[4]; /1 read current value of pin 4 as an input
iprintf("Pin[4] input value = %d\r\n", n);

}

9.5 A Simple Pin Class Special Function Example

The following code illustrates how to configure a pin for a special function, I2C. This handles the pin
configuration. The application would still need to implement the I2C driver.

voi d UserMain(void *pd)

{
SinpleUart(0, SystenBaud); // initialize UART O
Enabl eSmart Traps() ; /1 enable smart trap utility
OSChangePrio(MAIN PRIO); /1 set standard UserMain task priority
Enabl eSeri al Updat e() ; /1 enable serial updates
assign_stdio(0); /1 use UART O for stdio
iprintf("Starting SinplePinFuncti on Exanple\r\n");
Pins[4].function(PINA_SCL);
Pins[5].function(PIN5_SDA);
VWile (1)

/1 Application code goes here

}

}

NetBurner Mod5213 Programming Guide, Rev. 1.0 Page 34

10 Analog to Digital Functions

10.1 Mod5213 A/D Capabilities

The Mod5213 has two separate 12-bit A/D converters, each with their own sample and hold circuit.
Each converter has 4 multiplexed analog inputs, providing 8 channels of analog input.

The ColdFire 5213 processor on-board A/D features include:

e 12-bit resolution

e Maximum ADC clock frequency of 5.33MHz, 187.5ns period

e Sampling rate up to 1.78 million samples per second (see footnote 1).

e Single conversion time of 8.5 ADC clock cycles (8.5 x 187.5ns = 1.595us)

e Additional conversion time of 6 ADC clock cycles (6 X 187.5ns = 1.126us)

e FEight conversions in 26.5 ADC clocks (26.5%187.5ns = 4.972us) using simultaneous mode
e Ability to simultaneously sample and hold two inputs

e Ability to sequentially scan and store up to eight measurements

e Internal multiplex to select two of eight inputs

e Power savings modes allow automatic shutdown/startup of all or part of ADC

e Inputs that are not selected can tolerate injected/sourced current without affecting ADC

performance, supporting operation in noisy industrial environments.

e Optional interrupts at the end of a scan, if an out-of-range limit is exceeded (high or low), or at
Zero crossing

e Optional sample correction by subtracting a pre-programmed offset value
Signed or unsigned result

o Single ended or differential inputs for all input pins with support for an arbitrary mix of input

types

Footnote 1: Once in Loop mode, the time between each conversion is six ADC Clock cycles (1.125 ps). Using
simultaneous conversion two samples are captured in 1.126 ys, providing an overall sample rate of 1,776,667
samples per second.

10.2 The NetBurner Mod5213 A/D API

The Mod5213 API supports automatic continuous sampling of all 8 input channels, and a function to
read the last sampled value for a particular analog input channel. If you need precise interrupt driven
sampling and control, you will need to create an A/D driver specific to your application. The
Freescale 5213 Users Manual is a good reference on how to configure the A/D system to meet your
application requirements.

NetBurner Mod5213 Programming Guide, Rev. 1.0 Page 35

10.3 Default Sample Rate

The A/D sample rate is 33,177,600 / (clock div * 6). If all 8 A/D's are running, then the sample rate
for any one channel must be divided by the number of active channels - in this case 8. For the default
value of clock div =7, the sample rate is: 33,177,600 / (7*6*8) = 98,742 Samples per second.

10.4 API Functions

Using the A/D functions with the Mod5213 API is very simple. Call the function EnableAD() to
activate the A/D background sampling, then call ReadA2DResult() whenever you wish to get the last
sample. The functions are shown below:

voi d Enabl eAD(BYTE clock div =7); // default divider value is 7

WORD ReadA2DResult(int ch); /1 ch = channel number 0 - 7

Note that the 5213 A/D hardware reports the 12-bit value in a 16-bit format to accommodate the many
A/D operating modes. For a single ended measurement the count value is stored in the upper 12 bits
of a 16-bit word.

10.5 Mod5213 Hardware Configuration

The Mod5213 provides the following connections on the 40 pin header:

VDDA A/D voltage input
VRH A/D voltage reference high
VRL/VSSA A/D voltage reference low and voltage power ground.

The A/D on the Mod5213 has its own power and ground connections, as well as a separate A/D
voltage reference input in case you want to use a precision voltage reference. The Mod5213
development kit carrier board has two jumpers that can be used for development purposes:

JP3 Connect VDDA to 3.3VDC
JP4 Connect VRH to 3.3VDC

NetBurner Mod5213 Programming Guide, Rev. 1.0 Page 36

10.6 A/D Example

The Mod5213 A/D example is located in \nburn\examples\Mod5213\a2d. When you run the example
you can view the A/D readings via the serial port and MTTTY. A MTTTY screen shot is shown

below:

B Multi-threaded TTY

Eile Edit TITY Transfer Help
Part Baud P arity [1ata Bitz Stop Bits ™ Local Echo r
| | 115200 =] Mone | |2 = | | ¥ DisplayEmors [~
[~ CR=:CRAF [
Fant... ‘ Caomm Ewents. . ‘ Flow Contral... ‘ Timeauts.. | Disconnect | W Autowrap r
A
it any key to display A2D readings
DIA1 = 28576 counts
DI11 = 19376 counts
DI2]1 = 16944 counts
DI3]1 = 16696 counts
DI4]1 = 28488 counts
DI5]1 = 18296 counts
DI6] = 17488 counts
DILY?] = 16352 counts
it any key to display A2D readings
L%
£ >
todem Status Comm Status
ZATCP O o Y
[CTS [DSR [RING |~ FLSD(CD)| |~ CTSHold [XOFFHold I TXChar || o 1op vrote 99990
[DSRHaold | #0OFF Sent T Chars: |0 25:TCP Cloged
[RLSD Hold I EOF Sent R Chars (0 A

NetBurner Mod5213 Programming Guide, Rev. 1.0 Page 37

10.7 A/D Example Source Code Listing

#i ncl ude "predef.h"

#i ncl ude <basi ctypes. h>
#i ncl ude <bsp. h>

#i nclude <..\MOD5213\system si nb213. h>
#i ncl ude <ucos. h>

#i ncl ude <snarttrap. h>

#i nclude <serialirqg.h>

#i ncl ude <utils. h>

#i ncl ude <Seri al Update. h>
#i ncl ude <constants. h>

#i ncl ude <system h>

#i ncl ude <stdio. h>

#i ncl ude <a2d. h>

#i ncl ude <Pins. h>

extern "C'

{
}

void UserMain(void *pd);

void UserMain(void *pd)

{
OSChangePrio(MAIN PRI O);
Enabl eSmart Traps() ;
Enabl eSeri al Updat e() ;
Sinmpl eUart (0, SystenBaud);
assign_stdio(0);

/1 Configure the A2D pins as anal og inputs
Pins[11].function(PIN11_AN2);
Pins[12].function(PIN12_ANl);
Pi ns[13].function(PIN13_ANO);
Pi ns[14] . function(PIN14_AN3);
Pi ns[15] . function(PIN15_A
Pi ns[16] . function(PIN16_A
Pi ns[17] . function(PIN17_A
Pi ns[18] .function(PIN18_AM);

66%

/*

Enabl e the A2D. The A2D subsystemwi |l run in the background
doi ng sanples at 98Khz. This is all done in hardware with no

CPU over head.

*/

Enabl eAD() ;
while (1)
{

iprintf("Ht any key to display A2D readings\r\n");

char ¢ = sgetchar(0); // direct call to serial driver,

for (int i =0; i <8; i++)
{
/*

NetBurner Mod5213 Programming Guide, Rev. 1.0

not stdio

Page 38

The count val ue returned by ReadA2DResult() is the val ue
stored fromthe previous sanple, at the 98. 742KHz sanpl e
rate. The number of sanple counts is stored as a 16-bit
val ue to accommodate the various configurations of the
A/ D channels. Since we are doing a sinple single ended
neasur ement between 0 and 3.3V, we will left shift the
count value so it falls within the 12-bit 4096 count range.
*/
int counts = ReadA2DResult(i) >> 3;
float volts = ((float)counts / (4095.0)) * 3.3;
printf("AD[%] = % counts, % volts\r\n", i, counts, volts);

}
iprintf("\r\n");

NetBurner Mod5213 Programming Guide, Rev. 1.0 Page 39

11 NetBurner uC/OS RTOS

The uC/OS is a very stable, fast and reliable operating system. The NetBurner implementation takes
up very memory, and it can make applications much easier to code and maintain. In most cases
applications will simply create a few tasks and pass messages between tasks, as in the factory demo
program. Even if you only need a single UserMain() task, some of the RTOS functions such as
OSTimeDly() and interrupt driven serial I/O can come in handy. Just code the application like
UserMain() is the equivalent of a standard C type main() function.

If that is all your applications require, you may not even need to dig any deeper. But if you do need
advanced features, uC/OS has plenty to offer. For more in-depth information on advanced features,
please refer to the NetBurner RTOS programming guide.

11.1 RTOS System Resource Usage

Use of the RTOS will have the following impact on system resources. The default values for these
resources are located in \nburn\include nn\ucos.h. You have the option of specifying a non-default
value when you call an RTOS function, or you can change the default values in ucos.h. Whenever you
make a change to a system file in \nburn\include nn or \nburn\system nn, be sure to “Rebuild All” so
the system library is rebuilt and the changes take effect.

11.1.1 Task Stack Size

Each task has its own stack space. If you use the function

GSSi npl eTaskCreat e(TaskNane, priority);

the default stack size will be used. The UserMain() task and system idle task are created at boot and
will use 512 bytes and 256 bytes respectively. There values are defined as:

#define | DLE_STK_SI ZE (256)
#defi ne USER_TASK_STK_SI ZE (512)

11.1.2 System Clock Tick

The RTOS system clock uses the 5213 Periodic Interrupt Timer (PIT) 0, which uses interrupt request
1 at priority level 3. The default number of ticks per second is defined as:

#def i ne Tl CKS_PER SECOND (20) /* Systemclock tick */

NetBurner Mod5213 Programming Guide, Rev. 1.0 Page 40

If you want to change the ticks per second you can; the recommended values are between 20 and 200.
For high resolution timing, such as microseconds, the best method is to use another hardware timer in
the 5213.

11.1.3 Maximum Number of Tasks

The maximum number of tasks is set at 20 by default. Allowing for reserved tasks, this number can be
increased to 56.

#defi ne OS_MAX TASKS 20 /* Max nunber of systemtasks */

11.14 Task Priorities

The convention in uC/OS is that the lower the number, the higher the priority. This means a priority
number of 50 is lower priority than 49. In a preemptive RTOS, the highest priority task (lowest
priority number) will always run unless a blocking function is called in the higher priority task.

Priorities range from 0 to 63, with 0-3 reserved for future system usage, and 63 reserved for the
system idle task. The system idle task is the lowest priority since it is designed to run only when
nothing else of higher priority is available. It is just a series of nop instructions.

The recommended priority for UserMain() is 50. This is just a number selected so applications can
easily pick priorities higher and lower for other tasks. This number originated on NetBurner network
enabled platforms, which occupy some numbers between 20 and 30.

#define MAIN PRIO (50) /* used for UserMain */

11.1.5 Interrupt Driven Serial Ports

The interrupt driven serial port drivers use the RTOS. Interrupts on the Mod5213 are beyond the
scope of this document. Basically you can have interrupt requests numbered from 0 — 7, and interrupt
priority levels from 0 — 7 for each interrupt request. The serial port interrupt driver uses interrupt
request level 3 for all three UARTS, with priorities set to 1 for UART 0, 2 for UART 1 and 3 for
UART 2. This configuration is located in \nburn\Mod5213\system\ irq_serial init.cpp.

The interrupt driver also uses buffers to store serial data. The default sizes are defined below:

#def i ne SERI ALO_RX_BUFFER S| ZE (256)
#defi ne SERI ALO_TX_BUFFER_SI ZE (256)

#defi ne SERI AL1_RX BUFFER_SI ZE (256)
#define SERI AL1_TX BUFFER_SI ZE (256)

#defi ne SERI AL2_RX_BUFFER S| ZE (256)
#defi ne SERI AL2_TX_BUFFER_SI ZE (256)

NetBurner Mod5213 Programming Guide, Rev. 1.0 Page 41

11.1.6 Building Applications Without the RTOS

You can build applications without using the uC/OS RTOS if you want total control of the hardware.
To do this you create a main() function instead of UserMain(). An example is below:

#i ncl ude "predef.h"

#i ncl ude <basi ctypes. h> /1
#i ncl ude <serial pol|. h> /1
#i ncl ude <Seri al Update. h> /1
/*

The main() function is normally
declare your own if you want to
and not use the RTCS.

Include for variable types
Use serial polled driver
Update flash via serial port

handl ed by the operating system You can
have conplete control over the hardware

witestring(0, "This application does not use the RTOS\r\n");

*/

int main()
Si npl eUart(0, 115200);
Enabl eSeri al Updat e() ;
while(l);

}

NetBurner Mod5213 Programming Guide, Rev. 1.0

Page 42

