
© November 2004. ChoiceMaker Technologies, Inc. All Rights Reserved. Page 1

The ChoiceMaker 2 Record Matching System
Andrew Borthwick

ChoiceMaker Technologies, Inc.
646-336-4442

aborthwick@choicemaker.com

ABSTRACT
This paper describes the key features of an innovative record
matching system called ChoiceMaker 2 developed by
ChoiceMaker Technologies (CMT). We begin with an overview
of the stages that a record matching system goes through to find
an incoming “query record” in a database. We then consider the
stages one by one: We sketch out our patent-pending process for
identifying possible matches to the query record, which is known
as “blocking”. We describe the process by which we use a
machine learning technique known as maximum entropy
modeling to tune the system to the problem at hand. Next we
describe the ClueMaker® programming language that CMT has
developed for describing record matching characteristics. We
describe our method for testing record matching models and
describe how our IDE facilitates this process. We describe the
process by which we develop record matching models. Finally,
we discuss systems integration issues and the interfaces that
ChoiceMaker offers for deployment.

1. APPROXIMATE RECORD MATCHING
Approximate record matching is employed when information is
not always identified by a reliable unique key. Record-matching
tasks can be broken down into three main categories:

• Duplicate record removal or linkage: The same person,
business, or thing is present more than once in a
database. Duplicate records are removed or linked
together.

• Database linkage: Two databases are linked or merged.
This might occur, for instance, because of a corporate
merger, to build a data warehouse, or to prevent
duplication of effort by storing information common to
multiple databases in a single enterprise-wide database.

• Approximate database search: Search a database for
records similar to an input record. Similarly, prevent
users from adding duplicate records to the database by
providing a real-time check of whether a record entered
on a user entry screen is present in the database.

In all of these cases the basic problem is essentially the same.
Given an input or query record, search a target database for
record(s) that denote the same thing (e.g., the same person,
product, or company).

1.1 Matching Process Overview
Advanced approximate record matching systems generally
perform matching as a two-step process, as illustrated in Figure 1:

1. Query record. A query record is sent to the matching engine.

2. Blocking. The engine searches the target database for records
that are possible matches to the query record. The objective
at this stage is to retrieve all possible matches and not too
many non-matches.

3. Many possible matches. This is the set of records returned by
blocking which are possible matches to the query record.

4. Decision making. For each possible match, the matching
engine determines the probability that the record denotes the
same thing as the query record. Possible matches are sorted
into matches, potential matches, and non-matches based on
two user-defined thresholds. I.e., any record matching the
query record with a probability higher than the “match
threshold” is declared a “match”.

Figure 1: ChoiceMaker Matching Overview

2. BLOCKING
In the field of approximate record matching, a “blocking” step
refers to a fast matching algorithm primarily used as the first step
of a larger record matching system. The goal of a blocking step is
to attempt to find all possible matches to an input query record
rather than to aim for precision in determining which record is the
correct match. Blocking thus aims for maximum “recall” or
“sensitivity”, possibly at the expense of achieving high
“precision” or “specificity”. In effect, blocking is a sort of “is it
in the ballpark?” test that can be used to narrow down the number
of records that need to be processed by the higher precision, but
more computationally intensive “scoring” stage. In this second
stage, ChoiceMaker uses the computationally intensive maximum
entropy (ME) based model discussed below. The ME model tests
every record returned by the blocking algorithm against the query
record to see if they match.

Match

high
probability

Match
Probability

Differ

low
probability

Human
Review

medium probability

Query
Record

Decision
Making

Master
Database

Blocking

Many Possible
Matches

Match

high
probability

Match
Probability

DifferDiffer

low
probability

Human
Review
Human
Review

medium probability

Query
Record

Decision
Making

Master
Database
Master

Database

Blocking

Many Possible
Matches

© November 2004. ChoiceMaker Technologies, Inc. All Rights Reserved. Page 2

Blocking provides a huge performance improvement, because
when deduplicating a database of n records, there are
approximately n2/2 pairs of records in the database. Hence, when
n is of any magnitude, it would be time-prohibitive for the system
to attempt to examine all pairs of records.
Traditional blocking methods are generally based on an ad hoc
judgment of the usefulness of different fields in a matching
decision. For instance, a healthcare site might use Medicaid and
medical record number matches as blocking characteristics—
meaning that any records matching on those two fields would be
passed on to the second-stage matching algorithm. Also
commonly used are matches on birthday and first name, birthday
and last name, birthday and Soundex code of last name, etc.
This traditional approach can work reasonably well, but its ad hoc
nature places a limitation on the portability of any system built
around it. It also has a problem of generating too many false
negative responses (i.e., records that should have been linked, but
were not). The quality of the blocking routine is important to the
ability of the system to minimize the number of false negatives
since pairs that are not seen as possible matches in the blocking
phase will be missed even if the second-stage matching
algorithm’s decision-making engine would have assigned them a
high probability of match. At the same time, the system has to
carefully manage tradeoffs between false negatives and run-time
performance. If the blocking algorithm is too liberal in passing
along hypothetical matches, system run-time may exceed the
user's tolerance.
ChoiceMaker has developed a patent-pending approach to the
blocking problem. This technique automatically builds a query
that is as liberal as possible in efficiently retrieving records that
match on individual fields or sets of fields while avoiding
selection criteria that are predicted to return more than the
maximum number of records. The ability to do blocking without
extensive manual setup greatly simplifies the deployment of a
record matching system. In addition, the algorithm has the
advantage that response time is relatively predictable and
independent of the data in the query record.
In contrast to the traditional approaches discussed above which
block on fixed combinations of keys, ChoiceMaker’s automated
blocking algorithm (ABA) dynamically constructs a set of
database SELECT statements which we call “blocking sets.”
Each blocking set is built to be as liberal as possible in retrieving
records that match the query record on individual fields or sets of
fields while not containing SELECT statements that are predicted
to return more than a user-defined maximum number of records,
m. The records retrieved are those retrieved by the union of the
SELECT statements.
Let’s consider two examples. If the query record contains the
data “FirstName = Asa”, “LastName = Segur”, both of which are
rare names, we would construct a query which selected records
where “FirstName = Asa” OR “LastName = Segur”. On the other
hand, if the query record contains the data “FirstName = Jim”
AND LastName = Smith”, both of which are common names,
then we would construct a query which selected records where
“FirstName = Jim” AND “LastName = Smith”.
Our algorithm assumes that, for any query record we might
receive, we are able to determine the frequency of any value
entered in any column used in blocking. This is accomplished by
means of a “Counts” table which, for each blocking column,

holds the count of every value occurring in that column with a
frequency greater than m. This Counts table is updated
periodically (perhaps every day or every few hours), but it does
not need to be kept exactly accurate with respect the database
because, if one assumes that the database will be gradually
growing over time, we will expect the value counts on the Counts
table to tend to be slightly low. This will make values look rarer
than they really are, which will lead the algorithm to append
fewer additional fields onto blocking sets containing these slightly
underreported values. This will lead the algorithm to retrieve
slightly too many records for the second matching stage, which
will cause the algorithm to perform slightly more slowly than it
otherwise would, but it will not decrease the algorithm’s
accuracy.
Given this Counts table, the list of blocking columns, B, and m,
the maximum number of records that we want to retrieve with any
given SELECT statement, the algorithm is as follows:
1. Receive a query record, q
2. Obtain from Counts, frequency counts for every value in q

which is in a column in B
3. Create blocking sets

a. Find all combinations of blocking values from q
which are predicted to return fewer than m records:

i. Compute the expected frequency of
combinations of fields by combining
field frequencies while assuming that
values in different fields are independent

b. Don’t return any redundant blocking sets
4. Retrieve the union of the records that satisfy the query and

return them for second stage scoring.
As an illustration, suppose we had the following query record:

Field Value Field-value frequency

FirstName Keanu [Not in Counts]

LastName Reeves 20,000

City Beverly Hills 30,000

Street Locust Ln. [Not in Counts]

Age 40 1,000,000

Table 1: Example query record with frequency of values
If we assume that the value of m is 100 and that the database has
200,000,000 records, then we end up with the following SELECT
statements:

SELECT Expected
frequency

Comment

FirstName = “Keanu” < 100 Not in Counts

Street = “Locust Ln.” < 100 Not in Counts

LastName = “Reeves” AND
City = “Beverly Hills”

3

LastName = “Reeves”
AND Age = 40

100

Table 2: SELECT statements generated by ABA

© November 2004. ChoiceMaker Technologies, Inc. All Rights Reserved. Page 3

Note that we do not select on Age = 40 AND City = “Beverly
Hills” because it is expected to return 150 records. When we see
that this two-field blocking set is not sufficiently selective, we
attempt to add a third field. However, any field that we add
would be redundant with a blocking set we have already created.
FirstName and Street are already being used as single-field
blocking sets. On the other hand, if we added LastName to the
blocking set, then this blocking set would be redundant with other
two two-field blocking sets because both already will return a
superset of the records that this hypothetical three-field blocking
set would return.
ChoiceMaker has two patent-pending versions of this algorithm.
The real-time version described above is designed for situations
where sub-second response time is required. It is not suitable for
large databases. The batch version of this algorithm, which is the
subject of a second patent application, performs a similar process
to the real time and achieves the same level of accuracy, but gains
great efficiency by blocking all the query records simultaneously.
The batch version is used for deduplicating a database and
matching a large dataset against an already deduplicated database.
ChoiceMaker has used the batch blocking algorithm to
deduplicate a database at a rate of over 800,000 records per hour
on a typical high-end single-processor desktop with 1.5 GB of
RAM.

3. MACHINE LEARNING AND MODEL
DEVELOPMENT
ChoiceMaker’s record matching models are built around a set of
50 – 200 “clues” (more commonly known in the AI community as
“features”), which indicate a “match” or “differ” decision. Each
clue reads the pair of records in question—generally the query
record and a record from the database and determines whether a
particular indicator of a match or non-match decision is present in
this pair of records. If the clue’s criteria for predicting a match or
non-match are met, then we say that the clue is “active” on the
pair of records. Some sample clues include:

• Are the first names the same and are they common,
uncommon, or very rare?

• Do the last names have the same phoneticization
according to Soundex [6] or similar techniques?

• Is the date of birth different?
These clues are written in ChoiceMaker’s ClueMaker®
programming language described in section 4.

Our ML approach [3] constructs a record matching model that
outputs the probability that a pair of records represents the same
entity. The model is trained on a set of pairs of records that have
been tagged as a “match”, “differ”, or “hold (unsure)”. Although
we have experimented with other ML techniques, ChoiceMaker
currently uses maximum entropy modeling (ME) [1] [2] in all of
its production models. ME requires that each clue predict a
decision (a “future” in the AI literature), in this case the
predictions are “match” and “differ”. The ME training process
then assigns each clue a weight, which is a positive real number
indicating the relative predictive strength of the clue. At run time,
the weights of all active clues are combined to form a probability
of match by the following formula:

uctDifferProdctMatchProdu

ctMatchProdu
yProbabilit

+
=

where MatchProduct is defined as the product of the weights of
all clues predicting “match” for the pair and DifferProduct is the
product of all clues predicting “differ” for the pair.
To give a simple example, consider the example in Table 3 where
we are matching the search record “Jim Conner” to the potential
match record “Jim Connor.” Note here that “C560” is the
phonetic code for both Conner and Connor according to Soundex.
In this example, clues 1 and 3 activate predicting a “match”
decision whereas clue 2 activates predicting a “differ” decision.

 Field Query
Record

Match
Record

Clue
name Prediction Weight

1 First
name Jim Jim

First
names
match

Match 1.5

2 Last
name Conner Connor

Last
names
differ

Differ 2.2

3
Soundex
last
name

C560 C560

Soundex
last
names
match

Match 5.5

Table 3: Maximum entropy example
Putting this into the above formula gives us a probability of 79%
that “Jim Conner” and “Jim Connor” are the same person:
MatchProduct = 1.5 * 5.5 = 8.25
DifferProduct = 2.2 = 2.2
Probability = 8.25 / (8.25 + 2.2) = 79%
Remember that the weights 1.5, 2.2, and 5.5 were determined
during training by the maximum-entropy engine in an attempt to
produce for as many examples as possible a decision that is
consistent with the human marking. Note that the model most
likely contains many additional clues which did not fire on this
pair of records, such as “last names match,” but which would
have fired if their conditions were met.
Relative to other machine learning techniques, maximum entropy
has proven to be a good choice for this problem because it is fast
at run time, is relatively easy to explain to clients, and can assign
accurate weights to multiple overlapping and interacting clues.

4. CLUEMAKER® PROGRAMMING
LANGUAGE
4.1 Why a new programming language?
The introduction of a new programming language requires a
strong justification as IT departments are understandably hesitant
to support additional languages. We created ClueMaker [4] for
the following reasons:

• A set of clues written in ClueMaker is roughly ten times
shorter than the same set of clues written in Java.

© November 2004. ChoiceMaker Technologies, Inc. All Rights Reserved. Page 4

• Clues written in ClueMaker are more easily understood
by customers

• Since ClueMaker contains many constructs specific to
record matching it is less error prone than repetitious
boilerplate code in Java.

• ClueMaker permits many code optimizations (such as
common subexpression elimination and loop invariant
code motion) that cannot be applied to Java programs
because of side effects. The performance gain of these
optimizations can often reach a factor of ten.

These benefits, coupled with the fact that ClueMaker gets
compiled into Java should mitigate IT concerns. Note also that
for clients who leave model development in the hands of CMT, IT
staff needs little or no understanding of ClueMaker. For clients
who want to build or maintain their own record matching models,
only a small team of model developers needs to learn ClueMaker.

4.2 ChoiceMaker Schemas
The records to be matched are described by a ChoiceMaker
schema, which is defined in an XML document. A schema defines
the name and type of each field. It may also define a field’s
‘validity predicate’, which is a Java expession that identifies valid
values. For instance, a first name of “Boy” would not be valid,
and a social security number would never begin “000”. A schema
can also define derived fields, which are computed from other
values in the record. For example, the fields “city”, “state”, and
“zip code” can be derived from an unparsed address.

4.3 ClueMaker and Java
ClueMaker extends Java with some powerful constructs that make
it easy to write record matching clues. The ClueMaker compiler
compiles ClueMaker code into Java.

An example clue is mFirstName, which is shown in the first 4
lines in Figure 2. The keyword match indicates that the clue
predicts “match”. The keyword valid takes a field-name
argument and calls the field’s validity predicate in the schema,
which returns true if the field’s value is valid. The two records
being compared are always referred to as q (the input, or “query”
record) and m (the possibly matching record retrieved from the
database).

The expression q.firstName == m.firstName is simply a Java
expression. These expressions can be arbitrarily complex. For
instance, in dLastNameSoundex, we see a call to the Java
method “soundex” in the Soundex class.

Figure 2: Example ClueMaker clues

Consequently, ClueMaker is a very easy language for a Java
programmer to learn. The core of each clue consists of actual
Java code. Complicated methods such as Soundex can be
defined in standard Java. The ClueMaker language manual
devotes just 25 pages to describing the novel features of the
language.

4.4 ClueMaker features
ClueMaker does, however, contain many constructs that greatly
facilitate writing clues. These include:

• The shorthand forms “same” and “different” which
simultaneously check validity and whether the fields in
question are the same or not

• A “swap” construct which checks whether a pair of
fields have been swapped (e.g., first name in the last
name field).

• An ability to work with “stacked data”, schemas which
hold multiple values for the same field. For instance,
many databases allow multiple values for address,
names, etc.

ClueMaker, along with ChoiceMaker’s machine learning
technology, allows the efficient construction of record matching
models which are carefully optimized to solve the challenges of
each client’s database.

4.5 Complex Clues in ClueMaker
A key advantage to ClueMaker is that it allows model developers
to concisely describe complex record matching criteria. For
instance, when matching a nationwide database of names,
addresses, and birthdays, we built a record matching clue which
looked for “snowbirds”, retirees who lived in the Northeast or
Midwest in the summer and in Florida or Arizona in the winter.
This is a strong indicator of a match condition which requires
examining multiple fields simultaneously. This clue is illustrated
in Figure 3, where we use a mapping from state to region of the
country: Northeast, Midwest, South, and West are 1, 2, 3, and 4,
respectively.

Figure 3: “Snowbird” clue

Hence, ClueMaker allows the developer to represent this
sophisticated piece of human intuition in a record matching model
with just seven lines of code.

5. TESTING
After developing clues in ClueMaker for our record matching
model and training it on hand-marked data using ME, we are
ready to test the model on a separate corpus of hand-marked data

clue mFirstName {
 match valid(q.firstName) && valid(m.firstName)
 && q.firstName == m.firstName;

}

clue dLastNameSoundex {
 differ valid(q.lastName) && valid(m.lastName) &&
 Soundex.soundex(q.lastName) !=
 Soundex.soundex(m.lastName);
}

 1 clue mSnowbirds {
 2 match exists(i,j;
 3 and(valid(r.info[i,j].state)) &&
 4 and(r.info[i, j].age>=60) &&
 5 xor(r.info[i, j].state == “FL” || r.info[I, j].state == “AZ”) &&
 6 xor(Maps.lookupInt(“stateRegions”, r.info[i,j].state) <=2));
 7 }

© November 2004. ChoiceMaker Technologies, Inc. All Rights Reserved. Page 5

on which the model has not been trained. This testing on unseen
data is performed on data tagged by ChoiceMaker Technologies
during the development process and then is performed by the
client on data tagged by the client for a final test prior to
deployment. This final test is designed to be a scientific
evaluation of the system, to ensure that the record matching
model has not been tuned to the peculiarities of the training and
development test data. Our development process is illustrated in
Figure 4.

Figure 4: ChoiceMaker’s model development process
ChoiceMaker recommends that its clients evaluate the system by
first determining what false-positive and false-negative error rates
they can accept, where a false-positive is a record-pair identified
as a match by ChoiceMaker which is human tagged as “differ”
and a false-negative is a pair human tagged as “match” which
ChoiceMaker identifies as “differ” (see Table 4)..

Clerical decision

Differ Match

Differ Correct False-
negative

ChoiceMaker
decision

Matc
h

False-
positive

Correct

Table 4: Types of errors
Different clients may have different relative tolerances for false-
positives and false-negatives. For instance, in a children’s
immunization database, falsely identifying two individuals as the
same person could be very serious because if, say, “John” was
vaccinated but “Jon” was not, then John’s vaccine would appear
on Jon’s record and Jon would not be vaccinated. On the other
hand, in a counter-terrorism situation, it is more important not to
miss any possibly matching suspects, even at the expense of
falsely identifying non-terrorists as requiring investigative follow-
up.

Given the client’s stated tolerance for false-positive and false-
negative responses, the client can test the model using our
ChoiceMaker Analyzer tool, which determines the “match” and
“differ” thresholds (see section 1.1) which will yield no more than
the desired error rates. The client can then evaluate the quality of
the model based on the percentage of record-pairs that fall
between the match and differ thresholds. Since the client will
need to evaluate these records by hand, lower percentages are
clearly desired.
If the percentage of record-pairs in the “false positive”, “false
negative”, and “needs human review” buckets are acceptable to
the client, then the model is ready to be deployed in production.
On the other hand, if the accuracy is unsatisfactory, the client can
use ChoiceMaker Analyzer to better understand the record-pairs
that the system is classifying incorrectly. For example, if there are
patterns of errors which suggest the need for additional clues or
changes to existing clues, then the client can report these patterns
to CMT to help CMT’s developers improve the model.

6. SYSTEM INTEGRATION
ChoiceMaker has a flexible architecture which is easily integrated
into almost any common system architecture.
ChoiceMaker is a 100% Java application, allowing it to run on
any platform supporting Java 1.4, including Windows, Unix,
Linux and all other major operating systems.
ChoiceMaker currently runs against Oracle and MS SQL-Server
databases, with other database implementations planned when
required. As noted below, when operating in batch mode,
ChoiceMaker also takes XML or comma separated (.csv) files as
input.
Since it is designed from the ground up to be integrated into a
larger system. ChoiceMaker offers both Enterprise Java Bean
(EJB) and Web Services (SOAP) interfaces. For clients
preferring a batch mode, command line interface, this is available
too.
As mentioned above in Section 2, “Blocking”, ChoiceMaker
offers two logical interfaces: real-time and batch. In the real-
time version of the algorithm, ChoiceMaker’s inputs and outputs
are as follows:

Input: A query record, comprising the identifying
information about the person or entity the user is seeking in
the database
Output: A list of record ID’s in the database which are
possible matches to the query record. For each ID, we return
ChoiceMaker’s decision (either “match” or “hold/possible
match”) and the probability that the ID matches the query
record. In addition, depending on user requirements, we can
also return a parsed and standardized version of the input
record. For instance, we can parse a person’s name into first,
middle, and last names and we can parse the address into
house number, street name, apartment number, city, state, zip
code, and country.

ChoiceMaker’s batch interface inputs a large number of query
records all at once. These records may be input as one of the
following:
1. An Oracle or MS SQL Server database
2. An XML file

Design

Clues

Training

Test

Clues with Weights

Marked Record Pairs

Test Marked Record Pairs

ChoiceMaker
Production
Matching

Yes

Accuracy
Okay?

No

© November 2004. ChoiceMaker Technologies, Inc. All Rights Reserved. Page 6

3. A delimited flat file, such as a comma separated value (.csv)
file which can be exported from Microsoft Excel

For each record in the batch, ChoiceMaker outputs the same
information as the real-time version. Note that the batch interface
detects matches both among the query records and between the
query records and the database records. If there is no database,
then ChoiceMaker simply deduplicates the query records.
As noted above, the batch interface provides very high speed
throughput, but does not provide a real-time response. It does,
however, provide a Web Services or EJB API allowing the
client’s system to monitor and control the progress of the batch
process.
The batch interface also offers a “transitivity engine” which
transforms ChoiceMaker’s pairwise match or hold decisions into
user-defined database actions for each input record. These
database actions, for a given record X, might include
”Load X as a new record”, “Link X with record Y”, or “Place X in
the queue of records to be human reviewed”.
A simple example of the transitivity engine’s usefulness is that it
allows the user to specify what they want to do when
ChoiceMaker detects that records A and B match and records B
and C match, but ChoiceMaker cannot verify that A and C match.
Another example is the following: assume that records 1 and 2 are
records in a database presumed to be free of duplicates. What
should be done when ChoiceMaker matches record A to both 1
and 2? These matches would seem to imply that 1 and 2 are
duplicates, which contradicts the assumption that the database is
free of duplicates. In each of these cases, the user might specify
to ChoiceMaker’s transitivity engine that the records in question
should be linked, that they should be assumed to be non-matches,
or that they should be held for human review. The user also has
the option of specifying different actions for the transitivity
engine based on the strength of ChoiceMaker’s predictions. For
instance, if A is a high probability match to both B and C, but B
and C are just low probability matches to each other, the user can
specify to the transitivity engine that B and C should be declared
a match rather than held for human review.

7. RESULTS
The algorithms described in this document have enabled
ChoiceMaker to tackle a broad variety of data quality issues.
Some representative projects include:

• New York State Education Department: New York State
Student Identification System

• Iowa Education Department: A statewide student
identification system

• Agency for Toxic Substance and Disease Registry: World
Trade Center Registry Project [5]--a database seeking to
track everyone in the vicinity of the World Trade Center on
9/11/2001 for epidemiological studies on health issues such
as lung cancer, depression, etc.

• A major pharmaceuticals firm: A system to provide real-
time matching of a nationwide database of over five million
healthcare professionals

Here we will describe a case study of the use of ChoiceMaker on
a major public health project at the New York City Department of

Health and Mental Hygiene (DOHMH). The DOHMH used
ChoiceMaker 2 in a Master Child Index to link the Citywide
Immunization Registry (CIR), which tracks children’s
vaccinations citywide, and LeadQuest, a system which tracks
children’s blood lead levels for the same citywide population of
children. A fuller description of this project can be found in [7].
A children’s immunization database proved to be a highly
challenging problem because of the inherent noisiness and
variability of the data. Children often receive their first
vaccination (for Hepatitis B) the day they are born, at which point
they often have not been given a first name. Furthermore,
children’s names change frequently due to nicknaming,
Americanization, a mother marrying and changing her name
along with the child’s, or any one of a number of reasons.
Finally, the diversity and unfamiliarity of NYC’s multiethnic
population, where over 52% of New York City births were to
foreign-born mothers, led to an increased number of spelling
errors [7].
One factor facilitating the successful completion of this task was
that ChoiceMaker was able to leverage a broad range of data
fields containing different types of identifying information,
including mother’s maiden names, Medicaid numbers, and
medical record numbers. On the other hand, every one of these
fields was present on only a minority of records and was
problematic in a different way. For instance, when asked to fill in
their maiden name, married women (particularly foreign-born
women) will often misunderstand the question and fill in their
married name. A Medicaid number should be a completely
reliable identifier, but frequently a mother will put down her own
Medicaid number for all of her children, creating the possibility
that siblings might be incorrectly matched together. Hospital
medical record numbers are good identifiers, but are subject to
typographical errors. However, we learned that sequential
medical record numbers are a strong indicator that the two records
represent siblings who are twins, because when twins are born,
they are typically entered into the hospital’s database sequentially
and are assigned consecutive medical record numbers.
ChoiceMaker’s ClueMaker programming language proved to be
adept at describing these complex match or non-match clues
while our maximum entropy machine learning technology
handled the task of combining these clues into an integrated
probabilistic model.
ChoiceMaker built a record matching model containing 193
different clues to handle this complex record matching problem.
Out of a total of 4.6 million records in the CIR and LeadQuest,
“more than 1.6 million records within and between the two
systems were merged, at a very high level of accuracy” [7]. One
measure of the success of the MCI project is that the DOHMH is
planning to leverage the MCI department-wide. A
Communicable Disease Surveillance System will be the first
system to join, but down the road, other programs such as
Sexually Transmitted Diseases and HIV are planning to join. The
DOHMH also reported that “indications are that the matching
system is more accurate in merging records than humans” [7].

8. CONCLUSIONS
ChoiceMaker combines several innovative technologies which
make for a system which can be rapidly customized to accurately
match any kind of data. These technologies include a Java-based

© November 2004. ChoiceMaker Technologies, Inc. All Rights Reserved. Page 7

programming language for describing the matching characteristics
(called “clues”) of pairs of records in a database and machine
learning technology for combining these clues into an overall
probabilistic model by learning the relative importance of the
different clues from human-marked pairs of records.
ChoiceMaker also exhibits high speed due to its innovative use of
patent-pending algorithms for identifying possibly matching
records in the first stage of matching known as “blocking”. The
Java-based system is available for virtually any operating system
and runs against Oracle, MS SQL Server, and XML databases. It
provides web services, EJB, and batch interfaces.
ChoiceMaker has proved to be an effective commercial solution
for a wide range of approximate matching problems, including a
noisy, complicated New York City medical records database.

9. ACKNOWLEDGMENTS
This material is based in part upon work supported by Small
Business Innovation Research (SBIR) grants from the National
Science Foundation under Awards Number DMI-0060675 and
DMI-026213. Any opinions, findings, and conclusions or
recommendations expressed in this publication are those of the
author and do not necessarily reflect the views of the National
Science Foundation.

10. REFERENCES
[1] Berger, A., Della Pietra, S. A., and Della Pietra, V. J., A

Maximum Entropy Approach to Natural Language Processing

Computational Linguistics, vol. 22, pp. 39-71, 1996.

[2] Borthwick, A., A Maximum Entropy Approach to Named
Entity Recognition 1999. New York University.

[3] Borthwick, A., inventor. ChoiceMaker Technologies,
assignee. A Probabilistic Record Linkage Model Derived
from Training Data. no. 6,523,019, Feb 18, 2003.

[4] Buechi, M., Borthwick, A., Winkel, A., and Goldberg, A.,
"ClueMaker: A Language for Approximate Record
Matching," Eighth International Conference on Information
Quality, Cambridge, Massachusetts, Aug. 2003.

[5] ChoiceMaker Technologies, Inc. ChoiceMaker Technologies
provides matching engine in World Trade Center Health
Registry. Available at http://www.choicemaker.com/
press%20releases/wtc_reg.htm

[6] Knuth, D. The Art of Computer Programming, Reading, MA:
Addison-Wesley, 1998.

[7] Papadouka, V., Schaeffer, P., Metroka, A., Borthwick, A.,
Tehranifar, P., Leighton, J., Aponte, A., Liao, R., Ternier, A.,
Friedman, S., and Arzt, N., Integrating the New York
Citywide Immunization Registry and the Childhood Blood
Lead Registry Journal of Public Health Management and
Practice, vol. Nov, 2004.

