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ABSTRACT 
This paper describes the key features of an innovative record 
matching system called ChoiceMaker 2 developed by 
ChoiceMaker Technologies (CMT).  We begin with an overview 
of the stages that a record matching system goes through to find 
an incoming “query record” in a database.  We then consider the 
stages one by one:  We sketch out our patent-pending process for  
identifying possible matches to the query record, which is known 
as “blocking”.  We describe the process by which we use a 
machine learning technique known as maximum entropy 
modeling to tune the system to the problem at hand.  Next we 
describe the ClueMaker® programming language that CMT has 
developed for describing record matching characteristics.  We 
describe our method for testing record matching models and 
describe how our IDE facilitates this process.  We describe the 
process by which we develop record matching models.  Finally, 
we discuss systems integration issues and the interfaces that 
ChoiceMaker offers for deployment. 

1. APPROXIMATE RECORD MATCHING 
Approximate record matching is employed when information is 
not always identified by a reliable unique key. Record-matching 
tasks can be broken down into three main categories: 

• Duplicate record removal or linkage: The same person, 
business, or thing is present more than once in a 
database. Duplicate records are removed or linked 
together. 

• Database linkage: Two databases are linked or merged. 
This might occur, for instance, because of a corporate 
merger, to build a data warehouse, or to prevent 
duplication of effort by storing information common to 
multiple databases in a single enterprise-wide database. 

• Approximate database search: Search a database for 
records similar to an input record.  Similarly, prevent 
users from adding duplicate records to the database by 
providing a real-time check of whether a record entered 
on a user entry screen is present in the database. 

In all of these cases the basic problem is essentially the same. 
Given an input or query record, search a target database for 
record(s) that denote the same thing (e.g., the same person, 
product, or company). 

1.1 Matching Process Overview 
Advanced approximate record matching systems generally 
perform matching as a two-step process, as illustrated in Figure 1: 

1. Query record. A query record is sent to the matching engine. 

2. Blocking. The engine searches the target database for records 
that are possible matches to the query record. The objective 
at this stage is to retrieve all possible matches and not too 
many non-matches. 

3. Many possible matches. This is the set of records returned by 
blocking which are possible matches to the query record. 

4. Decision making. For each possible match, the matching 
engine determines the probability that the record denotes the 
same thing as the query record. Possible matches are sorted 
into matches, potential matches, and non-matches based on 
two user-defined thresholds. I.e., any record matching the 
query record with a probability higher than the “match 
threshold” is declared a “match”. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: ChoiceMaker Matching Overview 

2. BLOCKING 
In the field of approximate record matching, a “blocking” step 
refers to a fast matching algorithm primarily used as the first step 
of a larger record matching system.  The goal of a blocking step is 
to attempt to find all possible matches to an input query record 
rather than to aim for precision in determining which record is the 
correct match.  Blocking thus aims for maximum “recall” or 
“sensitivity”, possibly at the expense of achieving high 
“precision” or “specificity”.  In effect, blocking is a sort of “is it 
in the ballpark?” test that can be used to narrow down the number 
of records that need to be processed by the higher precision, but 
more computationally intensive “scoring” stage. In this second 
stage, ChoiceMaker uses the computationally intensive maximum 
entropy (ME) based model discussed below.  The ME model tests 
every record returned by the blocking algorithm against the query 
record to see if they match.  
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Blocking provides a huge performance improvement, because 
when deduplicating a database of n records, there are 
approximately n2/2 pairs of records in the database.  Hence, when 
n is of any magnitude, it would be time-prohibitive for the system 
to attempt to examine all pairs of records. 
Traditional blocking methods are generally based on an ad hoc 
judgment of the usefulness of different fields in a matching 
decision. For instance, a healthcare site might use Medicaid and 
medical record number matches as blocking characteristics—
meaning that any records matching on those two fields would be 
passed on to the second-stage matching algorithm. Also 
commonly used are matches on birthday and first name, birthday 
and last name, birthday and Soundex code of last name, etc. 
This traditional approach can work reasonably well, but its ad hoc 
nature places a limitation on the portability of any system built 
around it. It also has a problem of generating too many false 
negative responses (i.e., records that should have been linked, but 
were not). The quality of the blocking routine is important to the 
ability of the system to minimize the number of false negatives 
since pairs that are not seen as possible matches in the blocking 
phase will be missed even if the second-stage matching 
algorithm’s decision-making engine would have assigned them a 
high probability of match. At the same time, the system has to 
carefully manage tradeoffs between false negatives and run-time 
performance. If the blocking algorithm is too liberal in passing 
along hypothetical matches, system run-time may exceed the 
user's tolerance. 
ChoiceMaker has developed a patent-pending approach to the 
blocking problem.  This technique automatically builds a query 
that is as liberal as possible in efficiently retrieving records that 
match on individual fields or sets of fields while avoiding 
selection criteria that are predicted to return more than the 
maximum number of records. The ability to do blocking without 
extensive manual setup greatly simplifies the deployment of a 
record matching system.  In addition, the algorithm has the 
advantage that response time is relatively predictable and 
independent of the data in the query record.   
In contrast to the traditional approaches discussed above which 
block on fixed combinations of keys, ChoiceMaker’s automated 
blocking algorithm (ABA) dynamically constructs a set of 
database SELECT statements which we call “blocking sets.”   
Each blocking set is built to be as liberal as possible in retrieving 
records that match the query record on individual fields or sets of 
fields while not containing SELECT statements that are predicted 
to return more than a user-defined maximum number of records, 
m.  The records retrieved are those retrieved by the union of the 
SELECT statements. 
Let’s consider two examples.  If the query record contains the 
data “FirstName = Asa”, “LastName = Segur”, both of which are 
rare names, we would construct a query which selected records 
where “FirstName = Asa” OR “LastName = Segur”.  On the other 
hand, if the query record contains the data “FirstName = Jim” 
AND LastName = Smith”, both of which are common names, 
then we would construct a query which selected records where 
“FirstName = Jim” AND “LastName = Smith”.   
Our algorithm assumes that, for any query record we might 
receive, we are able to determine the frequency of any value 
entered in any column used in blocking.  This is accomplished by 
means of a “Counts” table which, for each blocking column,  

holds the count of every value occurring in that column with a 
frequency greater than m.  This Counts table is updated 
periodically (perhaps every day or every few hours), but it does 
not need to be kept exactly accurate with respect the database 
because, if one assumes that the database will be gradually 
growing over time, we will expect the value counts on the Counts 
table to tend to be slightly low.  This will make values look rarer 
than they really are, which will lead the algorithm to append 
fewer additional fields onto blocking sets containing these slightly 
underreported values.  This will lead the algorithm to retrieve 
slightly too many records for the second matching stage, which 
will cause the algorithm to perform slightly more slowly than it 
otherwise would, but it will not decrease the algorithm’s 
accuracy. 
Given this Counts table, the list of blocking columns, B, and m, 
the maximum number of records that we want to retrieve with any 
given SELECT statement, the algorithm is as follows: 
1. Receive a query record, q 
2. Obtain from Counts, frequency counts for every value in q 

which is in a column in B 
3. Create blocking sets 

a. Find all combinations of blocking values from q 
which are predicted to return fewer than m records: 

i. Compute the expected frequency of 
combinations of fields by combining 
field frequencies while assuming that 
values in different fields are independent 

b. Don’t return any redundant blocking sets 
4. Retrieve the union of the records that satisfy the query and 

return them for second stage scoring. 
As an illustration, suppose we had the following query record: 

Field Value Field-value frequency 

FirstName Keanu [Not in Counts] 

LastName Reeves 20,000 

City Beverly Hills 30,000 

Street Locust Ln. [Not in Counts] 

Age 40 1,000,000 

Table 1: Example query record with frequency of values 
If we assume that the value of m is 100 and that the database has 
200,000,000 records, then we end up with the following SELECT 
statements: 

SELECT Expected 
frequency 

Comment 

FirstName = “Keanu” < 100 Not in Counts 

Street = “Locust Ln.” < 100 Not in Counts 

LastName = “Reeves” AND 
City = “Beverly Hills” 

3  

LastName = “Reeves”  
AND Age = 40 

100  

 

Table 2: SELECT statements generated by ABA  
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Note that we do not select on Age = 40 AND City = “Beverly 
Hills” because it is expected to return 150 records.  When we see 
that this two-field blocking set is not sufficiently selective, we 
attempt to add a third field.  However, any field that we add 
would be redundant with a blocking set we have already created.  
FirstName and Street are already being used as single-field 
blocking sets.  On the other hand, if we added LastName to the 
blocking set, then this blocking set would be redundant with other 
two two-field blocking sets because both already will return a 
superset of the records that this hypothetical three-field blocking 
set would return. 
ChoiceMaker has two patent-pending versions of this algorithm.  
The real-time version described above is designed for situations 
where sub-second response time is required.  It is not suitable for 
large databases.  The batch version of this algorithm, which is the 
subject of a second patent application, performs a similar process 
to the real time and achieves the same level of accuracy, but gains 
great efficiency by blocking all the query records simultaneously.  
The batch version is used for deduplicating a database and 
matching a large dataset against an already deduplicated database.  
ChoiceMaker has used the batch blocking algorithm to 
deduplicate a database at a rate of over 800,000 records per hour 
on a typical high-end single-processor desktop with 1.5 GB of 
RAM. 

3. MACHINE LEARNING AND MODEL 
DEVELOPMENT 
ChoiceMaker’s record matching models are built around a set of 
50 – 200 “clues” (more commonly known in the AI community as 
“features”), which indicate a “match” or “differ” decision.  Each 
clue reads the pair of records in question—generally the query 
record and a record from the database and determines whether a 
particular indicator of a match or non-match decision is present in 
this pair of records.  If the clue’s criteria for predicting a match or 
non-match are met, then we say that the clue is “active” on the 
pair of records.  Some sample clues include: 

• Are the first names the same and are they common, 
uncommon, or very rare? 

• Do the last names have the same phoneticization 
according to Soundex [6] or similar techniques? 

• Is the date of birth different? 
These clues are written in ChoiceMaker’s ClueMaker® 
programming language described in section 4. 

Our ML approach [3] constructs a record matching model that 
outputs the probability that a pair of records represents the same 
entity.  The model is trained on a set of pairs of records that have 
been tagged as a “match”, “differ”, or “hold (unsure)”.  Although 
we have experimented with other ML techniques, ChoiceMaker 
currently uses maximum entropy modeling (ME) [1] [2] in all of 
its production models.  ME requires that each clue predict a 
decision (a “future” in the AI literature), in this case the 
predictions are “match” and “differ”.  The ME training process 
then assigns each clue a weight, which is a positive real number 
indicating the relative predictive strength of the clue.  At run time, 
the weights of all active clues are combined to form a probability 
of match by the following formula: 

uctDifferProdctMatchProdu

ctMatchProdu
yProbabilit

+
=  

where MatchProduct is defined as the product of the weights of 
all clues predicting “match” for the pair and DifferProduct is the 
product of all clues predicting “differ” for the pair. 
To give a simple example, consider the example in Table 3 where 
we are matching the search record “Jim Conner” to the potential 
match record “Jim Connor.” Note here that “C560” is the 
phonetic code for both Conner and Connor according to Soundex.  
In this example, clues 1 and 3 activate predicting a “match” 
decision whereas clue 2 activates predicting a “differ” decision.   

 Field Query 
Record 

Match 
Record 

Clue 
name Prediction Weight 

1 First 
name Jim Jim 

First 
names 
match 

Match 1.5 

2 Last 
name Conner Connor 

Last 
names 
differ 

Differ 2.2 

3
Soundex 
last 
name 

C560 C560 

Soundex 
last 
names 
match 

Match 5.5 

 

Table 3: Maximum entropy example 
Putting this into the above formula gives us a probability of 79% 
that “Jim Conner” and “Jim Connor” are the same person: 
MatchProduct = 1.5 * 5.5 = 8.25 
DifferProduct = 2.2 = 2.2 
Probability = 8.25 / (8.25 + 2.2) = 79% 
Remember that the weights 1.5, 2.2, and 5.5 were determined 
during training by the maximum-entropy engine in an attempt to 
produce for as many examples as possible a decision that is 
consistent with the human marking. Note that the model most 
likely contains many additional clues which did not fire on this 
pair of records, such as “last names match,” but which would 
have fired if their conditions were met.   
Relative to other machine learning techniques, maximum entropy 
has proven to be a good choice for this problem because it is fast 
at run time, is relatively easy to explain to clients, and can assign 
accurate weights to multiple overlapping and interacting clues. 
 

4. CLUEMAKER® PROGRAMMING 
LANGUAGE 
4.1 Why a new programming language? 
The introduction of a new programming language requires a 
strong justification as IT departments are understandably hesitant 
to support additional languages.  We created ClueMaker [4] for 
the following reasons: 

• A set of clues written in ClueMaker is roughly ten times 
shorter than the same set of clues written in Java. 
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• Clues written in ClueMaker are more easily understood 
by customers 

• Since ClueMaker contains many constructs specific to 
record matching it is less error prone than repetitious 
boilerplate code in Java. 

• ClueMaker permits many code optimizations (such as 
common subexpression elimination and loop invariant 
code motion) that cannot be applied to Java programs 
because of side effects. The performance gain of these 
optimizations can often reach a factor of ten.   

 
These benefits, coupled with the fact that ClueMaker gets 
compiled into Java should mitigate IT concerns.  Note also that 
for clients who leave model development in the hands of CMT, IT 
staff needs little or no understanding of ClueMaker.  For clients 
who want to build or maintain their own record matching models, 
only a small team of model developers needs to learn ClueMaker. 

4.2 ChoiceMaker Schemas 
The records to be matched are described by a ChoiceMaker 
schema, which is defined in an XML document. A schema defines 
the name and type of each field. It may also define a field’s 
‘validity predicate’, which is a Java expession that identifies valid 
values. For instance, a first name of “Boy” would not be valid, 
and a social security number would never begin “000”. A schema 
can also define derived fields, which are computed from other 
values in the record. For example, the fields “city”, “state”, and 
“zip code” can be derived from an unparsed address. 

4.3 ClueMaker and Java 
ClueMaker extends Java with some powerful constructs that make 
it easy to write record matching clues. The ClueMaker compiler 
compiles ClueMaker code into Java. 

An example clue is mFirstName, which is shown in the first 4 
lines in Figure 2.  The keyword match indicates that the clue 
predicts “match”. The keyword valid takes a field-name 
argument and calls the field’s validity predicate in the schema, 
which returns true if the field’s value is valid.  The two records 
being compared are always referred to as q (the input, or “query” 
record) and m (the possibly matching record retrieved from the 
database).  

The expression q.firstName == m.firstName is simply a Java 
expression.  These expressions can be arbitrarily complex.  For 
instance, in dLastNameSoundex, we see a call to the Java 
method “soundex” in the Soundex class.   

 
Figure 2: Example ClueMaker clues 

Consequently, ClueMaker is a very easy language for a Java 
programmer to learn.  The core of each clue consists of actual 
Java code.  Complicated methods such as Soundex can be 
defined in standard Java.  The ClueMaker language manual 
devotes just 25 pages to describing the novel features of the 
language. 

4.4 ClueMaker features 
ClueMaker does, however, contain many constructs that greatly 
facilitate writing clues.  These include: 

• The shorthand forms “same” and “different” which 
simultaneously check validity and whether the fields in 
question are the same or not 

• A “swap” construct which checks whether a pair of 
fields have been swapped (e.g., first name in the last 
name field). 

• An ability to work with “stacked data”, schemas which 
hold multiple values for the same field.  For instance, 
many databases allow multiple values for address, 
names, etc. 

 
ClueMaker, along with ChoiceMaker’s machine learning 
technology, allows the efficient construction of record matching 
models which are carefully optimized to solve the challenges of 
each client’s database.   

4.5 Complex Clues in ClueMaker 
A key advantage to ClueMaker is that it allows model developers 
to concisely describe complex record matching criteria.  For 
instance, when matching a nationwide database of names, 
addresses, and birthdays, we built a record matching clue which 
looked for “snowbirds”, retirees who lived in the Northeast or 
Midwest in the summer and in Florida or Arizona in the winter.  
This is a strong indicator of a match condition which requires 
examining multiple fields simultaneously.  This clue is illustrated 
in Figure 3, where we use a mapping from state to region of the 
country: Northeast, Midwest, South, and West are 1, 2, 3, and 4, 
respectively. 

 
 

Figure 3: “Snowbird” clue 
 
Hence, ClueMaker allows the developer to represent this 
sophisticated piece of human intuition in a record matching model 
with just seven lines of code. 

5. TESTING 
After developing clues in ClueMaker for our record matching 
model and training it on hand-marked data using ME, we are 
ready to test the model on a separate corpus of hand-marked data 

clue mFirstName { 
  match  valid(q.firstName) && valid(m.firstName) 
                 && q.firstName == m.firstName; 

} 
 
clue dLastNameSoundex { 
  differ valid(q.lastName) && valid(m.lastName)  &&    
               Soundex.soundex(q.lastName) !=  
               Soundex.soundex(m.lastName); 
} 

 1  clue mSnowbirds { 
 2     match exists(i,j; 
 3       and(valid(r.info[i,j].state)) && 
 4     and(r.info[i, j].age>=60) && 
 5     xor(r.info[i, j].state == “FL” || r.info[I, j].state == “AZ”) && 
 6     xor(Maps.lookupInt(“stateRegions”, r.info[i,j].state) <=2)); 
 7  } 
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on which the model has not been trained.  This testing on unseen 
data is performed on data tagged by ChoiceMaker Technologies 
during the development process and then is performed by the 
client on data tagged by the client for a final test prior to 
deployment.  This final test is designed to be a scientific 
evaluation of the system, to ensure that the record matching 
model has not been tuned to the peculiarities of the training and 
development test data.  Our development process is illustrated in 
Figure 4. 

 
 

Figure 4: ChoiceMaker’s model development process 
ChoiceMaker recommends that its clients evaluate the system by 
first determining what false-positive and false-negative error rates 
they can accept, where a false-positive is a record-pair identified 
as a match by ChoiceMaker which is human tagged as “differ” 
and a false-negative is a pair human tagged as “match” which 
ChoiceMaker identifies as “differ” (see Table 4)..   

Clerical decision  

Differ Match 

Differ Correct False-
negative 

ChoiceMaker 
decision 

Matc
h 

False-
positive 

Correct 

Table 4:  Types of errors 
Different clients may have different relative tolerances for false-
positives and false-negatives.  For instance, in a children’s 
immunization database, falsely identifying two individuals as the 
same person could be very serious because if, say, “John” was 
vaccinated but “Jon” was not, then John’s vaccine would appear 
on Jon’s record and Jon would not be vaccinated.  On the other 
hand, in a counter-terrorism situation, it is more important not to 
miss any possibly matching suspects, even at the expense of 
falsely identifying non-terrorists as requiring investigative follow-
up. 
 

Given the client’s stated tolerance for false-positive and false-
negative responses, the client can test the model using our 
ChoiceMaker Analyzer tool, which determines the “match” and 
“differ” thresholds (see section 1.1) which will yield no more than 
the desired error rates.  The client can then evaluate the quality of 
the model based on the percentage of record-pairs that fall 
between the match and differ thresholds.  Since the client will 
need to evaluate these records by hand, lower percentages are 
clearly desired.   
If the percentage of record-pairs in the “false positive”, “false 
negative”, and “needs human review” buckets are acceptable to 
the client, then the model is ready to be deployed in production.  
On the other hand, if the accuracy is unsatisfactory, the client can 
use ChoiceMaker Analyzer to better understand the record-pairs 
that the system is classifying incorrectly. For example, if there are 
patterns of errors which suggest the need for additional clues or 
changes to existing clues, then the client can report these patterns 
to CMT to help CMT’s developers improve the model. 

6. SYSTEM INTEGRATION 
ChoiceMaker has a flexible architecture which is easily integrated 
into almost any common system architecture. 
ChoiceMaker is a 100% Java application, allowing it to run on 
any platform supporting Java 1.4, including Windows, Unix, 
Linux and all other major operating systems. 
ChoiceMaker currently runs against Oracle and MS SQL-Server 
databases, with other database implementations planned when 
required.  As noted below, when operating in batch mode, 
ChoiceMaker also takes XML or comma separated (.csv) files as 
input.   
Since it is designed from the ground up to be integrated into a 
larger system. ChoiceMaker offers both Enterprise Java Bean 
(EJB) and Web Services (SOAP) interfaces.  For clients 
preferring a batch mode, command line interface, this is available 
too.   
As mentioned above in Section 2, “Blocking”, ChoiceMaker 
offers two logical interfaces:  real-time and batch.  In the real-
time version of the algorithm, ChoiceMaker’s inputs and outputs 
are as follows: 

Input:  A query record, comprising the identifying 
information about the person or entity the user is seeking in 
the database  
Output:  A list of record ID’s in the database which are 
possible matches to the query record.  For each ID, we return 
ChoiceMaker’s decision (either “match” or “hold/possible 
match”) and the probability that the ID matches the query 
record.  In addition, depending on user requirements, we can 
also return a parsed and standardized version of the input 
record.  For instance, we can parse a person’s name into first, 
middle, and last names and we can parse the address into 
house number, street name, apartment number, city, state, zip 
code, and country. 

ChoiceMaker’s batch interface inputs a large number of query 
records all at once.  These records may be input as one of the 
following: 
1. An Oracle or MS SQL Server database 
2. An XML file 

Design 

Clues 

Training 

Test 

Clues with Weights 

Marked Record Pairs 

Test Marked Record Pairs 

ChoiceMaker 
Production 
Matching 

Yes

Accuracy 
Okay? 

No 
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3. A delimited flat file, such as a comma separated value (.csv)  
file which can be exported from Microsoft Excel 

For each record in the batch, ChoiceMaker outputs the same 
information as the real-time version. Note that the batch interface 
detects matches both among the query records and between the 
query records and the database records.  If there is no database, 
then ChoiceMaker simply deduplicates the query records. 
As noted above, the batch interface provides very high speed 
throughput, but does not provide a real-time response.  It does, 
however, provide a Web Services or EJB API allowing the 
client’s system to monitor and control the progress of the batch 
process.   
The batch interface also offers a “transitivity engine” which 
transforms ChoiceMaker’s pairwise match or hold decisions into 
user-defined database actions for each input record.  These 
database actions, for a given record X, might include  
”Load X as a new record”, “Link X with record Y”, or “Place X in 
the queue of records to be human reviewed”. 
A simple example of the transitivity engine’s usefulness is that it 
allows the user to specify what they want to do when 
ChoiceMaker detects that records A and B match and records B 
and C match, but ChoiceMaker cannot verify that A and C match.  
Another example is the following: assume that records 1 and 2 are 
records in a database presumed to be free of duplicates.  What 
should be done when ChoiceMaker matches record A to both 1 
and 2?  These matches would seem to imply that 1 and 2 are 
duplicates, which contradicts the assumption that the database is 
free of duplicates.  In each of these cases, the user might specify 
to ChoiceMaker’s transitivity engine that the records in question 
should be linked, that they should be assumed to be non-matches, 
or that they should be held for human review.  The user also has 
the option of specifying different actions for the transitivity 
engine based on the strength of ChoiceMaker’s predictions.  For 
instance, if A is a high probability match to both B and C, but B 
and C are just low probability matches to each other, the user can 
specify to the transitivity engine that B and C should be declared 
a match rather than held for human review. 
   

7. RESULTS 
The algorithms described in this document have enabled 
ChoiceMaker to tackle a broad variety of data quality issues.  
Some representative projects include: 

• New York State Education Department:  New York State 
Student Identification System   

• Iowa Education Department:  A statewide student 
identification system 

• Agency for Toxic Substance and Disease Registry: World 
Trade Center Registry Project [5]--a database seeking to 
track everyone in the vicinity of the World Trade Center on 
9/11/2001 for epidemiological studies on health issues such 
as lung cancer, depression, etc. 

• A major pharmaceuticals firm:  A system to provide real-
time matching of a nationwide database of over five million 
healthcare professionals 

Here we will describe a case study of the use of ChoiceMaker on 
a major public health project at the New York City Department of 

Health and Mental Hygiene (DOHMH).  The DOHMH used 
ChoiceMaker 2 in a Master Child Index to link the Citywide 
Immunization Registry (CIR), which tracks children’s 
vaccinations citywide, and LeadQuest, a system which tracks 
children’s blood lead levels for the same citywide population of 
children.  A fuller description of this project can be found in [7]. 
A children’s immunization database proved to be a highly 
challenging problem because of the inherent noisiness and 
variability of the data.  Children often receive their first 
vaccination (for Hepatitis B) the day they are born, at which point 
they often have not been given a first name.  Furthermore, 
children’s names change frequently due to nicknaming, 
Americanization, a mother marrying and changing her name 
along with the child’s, or any one of a number of reasons.  
Finally, the diversity and unfamiliarity of NYC’s multiethnic 
population, where over 52% of New York City births were to 
foreign-born mothers, led to an increased number of spelling 
errors [7]. 
One factor facilitating the successful completion of this task was 
that ChoiceMaker was able to leverage a broad range of data 
fields containing different types of identifying information, 
including mother’s maiden names, Medicaid numbers, and 
medical record numbers.  On the other hand, every one of these 
fields was present on only a minority of records and was 
problematic in a different way.  For instance, when asked to fill in 
their maiden name, married women (particularly foreign-born 
women) will often misunderstand the question and fill in their 
married name.  A Medicaid number should be a completely 
reliable identifier, but frequently a mother will put down her own 
Medicaid number for all of her children, creating the possibility 
that siblings might be incorrectly matched together.  Hospital 
medical record numbers are good identifiers, but are subject to 
typographical errors.  However, we learned that sequential 
medical record numbers are a strong indicator that the two records 
represent siblings who are twins, because when twins are born, 
they are typically entered into the hospital’s database sequentially 
and are assigned consecutive medical record numbers.  
ChoiceMaker’s ClueMaker programming language proved to be 
adept at describing these complex match or non-match clues 
while our maximum entropy machine learning technology 
handled the task of combining these clues into an integrated 
probabilistic model. 
ChoiceMaker built a record matching model containing 193 
different clues to handle this complex record matching problem.  
Out of a total of 4.6 million records in the CIR and LeadQuest, 
“more than 1.6 million records within and between the two 
systems were merged, at a very high level of accuracy” [7].  One 
measure of the success of the MCI project is that the DOHMH is 
planning to leverage the MCI department-wide.  A 
Communicable Disease Surveillance System will be the first 
system to join, but down the road, other programs such as 
Sexually Transmitted Diseases and HIV are planning to join.  The 
DOHMH also reported that “indications are that the matching 
system is more accurate in merging records than humans” [7]. 

8. CONCLUSIONS 
ChoiceMaker combines several innovative technologies which 
make for a system which can be rapidly customized to accurately 
match any kind of data.  These technologies include a Java-based 
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programming language for describing the matching characteristics  
(called “clues”) of pairs of records in a database and machine 
learning technology for combining these clues into an overall 
probabilistic model by learning the relative importance of the 
different clues from human-marked pairs of records. 
ChoiceMaker also exhibits high speed due to its innovative use of 
patent-pending algorithms for identifying possibly matching 
records in the first stage of matching known as “blocking”.  The 
Java-based system is available for virtually any operating system 
and runs against Oracle, MS SQL Server, and XML databases.  It 
provides web services, EJB, and batch interfaces. 
ChoiceMaker has proved to be an effective commercial solution 
for a wide range of approximate matching problems, including a 
noisy, complicated New York City medical records database.  
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