
Embedded Software Outfitters

Sales: (800) 366-2491 Email: sales@smxinfo.com Web: www.smxinfo.com Voice: (714) 437-7333 Fax: (714) 432-0490

smxUSBH™

USB Host Stack

smxUSBH is a simple USB host stack for embedded systems. It is written in C, and can be ported to any
hardware platform. smxUSBH is optimized for SMX®, but can be ported to other RTOSs or run stand
alone. It is modularized so that only what is needed will be linked into the final application.

Layers

• Class Driver Layer provides USB device
support such as mouse, keyboard, hub,
printer, mass storage, and serial.

• USB Driver Layer (USBD), or Core,
provides the common USB device
functionality.

• Host Controller Driver (HCD) Layer
provides host controller driver functionality
and contains root hub support.

• Porting Layer provides service functions
related to the hardware, OS, and compiler.

Code Size

Code size can vary greatly depending upon the
processor, compiler, and optimization level. The
code sizes, below, are for Intel x86, Microsoft C,
optimization level O2.

Component Size (KB)
Core (USBD, Port. Layer, hub driver) 19
EHCI Driver 17
OHCI Driver 15.3
UHCI Driver 17.6
ISP116x Driver 8
ISP1362 Driver 8.5
ISP176x Driver 16.5
Mass Storage Device Driver 10
Mouse and Keyboard Device Driver 5
Printer Device Driver 3

RISC processors require about 20% more code
space.

Features

• Class drivers are available for mass storage
drives, mice, keyboards, printers, hubs, and
serial devices.

• Compatibility with ARM, ColdFire,
PowerPC, x86, and other CPU's.

• Cascading hub support for up to 127
devices.

• Compliant with USB Specification 2.0.
• Compliant with EHCI 1.0, OHCI 1.0a, and

UHCI 1.1 Specifications.
• Philips ISP1161/0, ISP1362, and ISP176x

support.
• Atmel AT91 and Freescale ColdFire USB

host controller support.
• Supports all four USB data transfers

(control, bulk, isochronous, and interrupt).
• Written entirely in ANSI-C.
• Porting, integration, and development

services are available.
• Typical code footprint is less than 50 KB

for a CISC processor.
• Optimized for SMX® RTOS.
• Integrated with smxFile and smxFS for

USB disk support.
• OHCI and UHCI support in real mode and

DOS.

Data Size

All RAM that smxUSBH uses for data is pre-
allocated from the heap when smxUSBH is first
initialized. Following is a table of RAM usage:

Host Controller Core + Mass

Storage Only
Core + All
Device Drivers

EHCI 16KB 20KB
OHCI 16KB 20KB
UHCI 76KB 80KB
ISP116x 8KB 12KB
ISP1362 6KB 8KB
ISP176x 8KB 12KB

UHCI requires much more memory than OHCI
because the hardware is more rudimentary and
the software must do more work. The UHCI
RAM requirements include 1024 Transfer
Descriptors (TDs) of 64 bytes, each (64KB total).
The number of TDs can be reduced, but
performance suffers. For example with 128 TDs,
performance is reduced by a factor of 10. For
OHCI, there is no RAM vs. performance tradeoff.
OHCI is obviously preferable to UHCI for limited
RAM systems.

Performance for Mass Storage

The following table shows raw transfer speed
from and to a USB flash disk. 30MB total
transfers are done 4KB at a time.

Host Controller Raw Reading Raw Writing
EHCI (NEC) 10825 KB/sec 7831 KB/sec
OHCI (NEC) 667 KB/sec 540 KB/sec
UHCI (VIA) 434 KB/sec 416 KB/sec
ISP116x (Philips) 340 KB/sec 335 KB/sec
ISP1362 (Philips) 472 KB/s 455 KB/s
ISP176x (Philips) 7425 KB/s 3214 KB/s

The following table shows smxFS read/write
performance for the same USB flash disk. Total
file size is 30MB with 4KB transferred, at a time.

Host Controller File Read File Write
EHCI (NEC) 10556 KB/sec 7211 KB/sec
OHCI (NEC) 651 KB/sec 523 KB/sec
UHCI (VIA) 429 KB/sec 408 KB/sec
ISP116x (Philips) 332 KB/sec 329 KB/sec
ISP1362 (Philips) 469 KB/s 454 KB/s
ISP176x (Philips) 7023 KB/s 3072 KB/s

s:\smxd\lit\prod\smxusbh.doc 7/17/06 2

 Class Driver API

Mass Storage
su_MStorIO(buf_ptr, first_sector, num_sectors,
 reading)
su_MstorMediaInserted()
su_MstorMediaRemoved()
su_MStorSectorNum()
su_MStorSectorSize()

Mouse
su_MouseInit()
su_MouseInserted()
su_MouseRelease()
su_MouseSetCallback(handler)

Keyboard
su_KbdInit()
su_KbdInserted()
su_KbdRelease()
su_KbdSetCallback(handler)

Printer
su_PrnID(pdata, len)
su_PrnInit()
su_PrnInserted()
su_PrnRead(pdata, len)
su_PrnRelease()
su_PrnReset()
su_PrnStatus()
su_PrnWrite(pdata, len)

Serial
su_SerialOpen(id)
su_SerialClose(id)
su_SerialInserted(id)
su_SerialRead(id, pdata, len)
su_SerialWrite(id, pdata, len)
su_SerialGetLineState(port, pstate)
su_SerialGetLineCoding(port, rate, parity,
 databits, stopbits)

Writing a New Class Driver

smxUSBH provides a class driver template and a
section in the manual to help you write a new
class driver.

Serial Class Driver

The serial driver supports any device that
Windows XP or 2000 can support without a
custom driver. Unfortunately, most serial adapters
do require installation of a driver on Windows.
Additional code must be developed to support
such an adapter, which could require significant
effort. Please see the smxUSBH User’s Guide for
details, and discuss your requirements with us.

Real Mode and DOS Support

Although the focus of SMX products is on
modern embedded processors such as ARM and
ColdFire, we recognize the need for legacy x86
systems to add USB support, especially for flash
disks. Because of this, we have put effort into
supporting OHCI and UHCI in real mode.

OHCI required some effort to support because it
uses memory mapped I/O and the PCI BIOS
assigns a high address near the top of the 4GB
memory space, which is not accessible in real
mode. We provide two solutions for this. In one
case a 386 or better is required. See the OHCI
section of the smxUSBH User’s Guide for details.

UHCI was fairly easy to support since it uses x86
I/O space for access to UHCI registers. All that is
required is a 386 or better because it requires
32-bit I/O instructions.

s:\smxd\lit\prod\smxusbh.doc 7/17/06 3

	Code Size
	Performance for Mass Storage
	The following table shows smxFS read/write performance for t
	Class Driver API
	Writing a New Class Driver
	Serial Class Driver
	Real Mode and DOS Support

