
Embedded Software Outfitters

Sales: (800) 366-2491 Email: sales@smxinfo.com Web: www.smxinfo.com Voice: (714) 437-7333 Fax: (714) 432-0490

smxUSBD™

USB Device Stack

smxUSBD is a robust USB device stack specifically designed and developed for embedded systems. It is
written in C, and can run on any hardware platform. While optimized for SMX®, smxUSBD can be
ported to another RTOS or operate in a stand-alone environment.

smxUSBD is a full-featured USB device stack. It
offers a clean, modular design that enables
embedded developers to easily add USB device
capabilities to their projects. Normally this is
done to permit connection to a PC or laptop in
order to upload or download data, tables, code,
etc. smxUSBD device stack is offered separately
from the smxUSBH host stack to reduce system
cost and memory usage for projects not needing a
host stack. It is compliant with the USB v2.0
specification (see www.usb.org.)

For easy connectivity to a PC or laptop,
smxUSBD includes three function drivers: serial,
mouse, and mass storage. Each is compatible with
the corresponding Windows USB function driver.
Thus, a device using smxUSBD does not require a
custom Windows driver in order to connect to a
PC or laptop. All that is needed is to decide on
the device connection most appropriate for your
device and to use the corresponding API for that
device – see below.

Layers

• Function Driver Layer provides USB
functions to application such as serial,
mouse, and mass storage emulators.

• Device Core Layer: provides the common

USB device framework.

• Device Controller Driver (DCD) Layer
provides the interface to the selected USB
device controller.

Features

• Function Drivers are available for serial,
mouse, and mass storage. These are
compatible with Windows class drivers.

• Composite Device support.
• Compatibility with ARM, ColdFire,

PowerPC, x86, and other CPU's.
• Compliant with USB Specification 2.0.
• Philips ISP1161, 1181, 1362, 158x, and

1761 device controller support
• Atmel AT91, Freescale ColdFire, Sharp

LH7A4xx, and STMicro STR7 on-chip
device controller support. Others being
developed.

• Written entirely in ANSI-C.
• Porting, integration, and development

services are available.
• Typical code footprint is less than 22 KB

for a CISC processor.
• Optimized for SMX® RTOS.
• Easily portable to other RTOSs.
• Also runs stand-alone.

• Porting Layer provides service functions

related to the hardware, OS, and compiler.

Driver Key to Following Tables

ISP1181 also supports ISP1161 and ISP1362
ISP158x also supports ISP1761

http://www.usb.org/

Code Size

Code size can vary greatly depending upon the
processor, compiler, and optimization level.

Component ARM
IAR
(KB)

CF
CW
(KB)

Core 9.5 9.5
Mass Storage Emulator 5 5
Mouse Emulator 1 1
Serial Emulator 2.5 2.5
Composite Driver 1 1
Philips ISP1181 Driver N/A 4
Philips ISP158x Driver N/A N/A
Atmel AT91 Driver 3 —
STMicro STR7 Driver 4 —

Data Size

All RAM used by smxUSBD for data is pre-
allocated from the heap during initialization.
Following is a table of RAM usage, in KB:

Device
Controller

Core +
Mass

Storage

Core +
Mouse

Core +
Serial

ISP1181 6 2 4
ISP158x 7 2.5 5

AT91 6 2 4
STR7 6 2 4

Performance

Serial

The following table shows the transfer rates for
sending and receiving serial data for different
packet sizes.

Device Controller Packet Size
(Bytes)

Rate
(KB/sec)

ISP1181, AT91, SR7 64 125
ISP1181, AT91, SR7 256 240
ISP1181, AT91, SR7 512 289

ISP158x 1024 645

Mass Storage

The following table shows mass storage
performance using a RAM disk in the device.

Device
Controller

File Read
(KB/sec)

File Write
(KB/sec)

ISP1181 1071 1071
ISP158x 5300 3890

s:\smxd\lit\prod\smxusbd.doc 7/17/06 2

Function Driver API

Mass Storage

sud_MSRegisterDisk(pdiskop, lun)

Mouse

sud_MouseInput(key, x, y, wheel)

Serial

sud_SerialIsPort Connected(port)
sud_SerialWriteData(port, pBuf, len)
sud_SerialDataLen(port)
sud_SerialReadData(port, pBuf, len)
sud_SerialSetLineState(port, iState)
sud_SerialGetLineState(port, piState)
sud_SerialGetLineCoding(port, pdwDTERate,
 pbParityType, pbDataBits, pbStopBits)
sud_SerialRegisterPortNotify(port, handler)

Composite Devices

smxUSBD allows creating a composite device.
Such a device has multiple interfaces that are
active at the same time using a single controller
chip. For example, a composite device might
combine mouse and mass storage. See the
smxUSBD User’s Guide for more discussion.

Writing New Drivers

smxUSBD provides a function driver template
and a section in the manual to help you write a
new function driver.

smxUSBD provides device controller driver
template and a section in the manual, to help you
write a new driver in case smxUSBD does not
support your device controller.

Porting

The hardware porting layer consists of two files,
udhdw.h and udhdw.c. These files contain
definitions, macros, and functions to port
smxUSBD to a particular target. In addition, if the
USB device controller is not among those already
supported, a new driver will need to be written.

smxUSBD was developed for use with SMX, but
it can be ported to any RTOS. The RTOS porting
layer consists of two files, udosport.h and
udosport.c. These files contain definitions,
macros, and functions to port to a particular
RTOS.

smxUSBD works best in a multitasking
environment, however, it can also be ported to a
non-multitasking stand-alone environment.

s:\smxd\lit\prod\smxusbd.doc 7/17/06 3

	Layers
	Driver Key to Following Tables
	Code Size
	Data Size
	Performance
	Serial
	Mass Storage

	Function Driver API
	Serial

	Composite Devices
	Writing New Drivers
	Porting

