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Is an .833 Hitter Better Than a .338 Hitter?

Jesse FREY

This article considers the problem of using batting average
alone to estimate a baseball player’s chance of getting a hit. This
problem differs from typical proportion estimation problems be-
cause we know only the observed proportion of successes rather
than both the number of successes and the number of trials. Our
information is also restricted because the observed proportion of
successes is reported to only three decimal places. We solve this
problem in the context of present-day major league baseball by
first developing a model for the joint distribution of hits, at bats,
and chance of getting a hit. We then treat that model as a prior
distribution and update the prior based on the observed batting
average. One interesting result is that among batting averages
likely to occur in practice, .334 leads to the highest posterior
mean for true ability.
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1. INTRODUCTION

Batting average, defined as the ratio b = h/a of a player’s
hits 4 to his at bats a, is one of the oldest and perhaps the best
known of all baseball statistics. Though it is now recognized to
be of less value in assessing the quality of a player’s contribu-
tions than on-base percentage, slugging average, or a myriad of
other statistics [see, e.g., the recent bestseller Moneyball (Lewis
2003)], batting average still has special significance for baseball
fans and players. For example, a batting average of .300 tends to
be regarded as good almost regardless of how meager a player’s
other contributions are, and a .400 average (not achieved in major
league baseball since 1941) continues to be a goal that some of
the greatest players aspire to. One batting-average-related con-
vention that is important for this article is that batting average is
always reported to exactly three decimal places, with rounding
used to determine the value in the third decimal place.

To a statistician, a batting average is an estimate of a player’s
true chance p of getting a hit. However, it is an estimate that
fails to take into account important auxiliary information such
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as the player’s past history and the distribution of true abilities
in the full population of baseball players. Thus, provided that
the values a and /4 that led to the batting average in question are
available, a number of improved estimates are possible. A simple
Bayesian approach might consist of putting a prior distribution
on p, modeling the distribution of batting average given p and a,
and updating the distribution of p based on the observed batting
average. One might also follow the strategy of Efron and Morris
(1975), who used an empirical Bayes approach to estimate true
abilities for selected players on the basis of the first 45 at bats
of the 1970 season. For such approaches to work, however, not
just the batting average, but both a and &, must be known.

This article considers the problem of using batting average to
estimate a player’s true chance p of getting a hit when the values
h and a are unavailable. This problem differs from typical pro-
portion estimation problems because we know only the observed
proportion of successes rather than both the number of successes
and the number of trials. It is also a censored data problem be-
cause batting average is reported in an interval-censored form.
This problem might arise because of space considerations (e.g.,
space on a scoreboard) or because of poor record-keeping. Work
on this problem was motivated by a trip to the local minor-league
ballpark in June 2004. Finding that batting average was the only
statistical information presented on the scoreboard and then dis-
covering that one of the home team’s players entered the game
with an .857 average, the author wondered what the appropriate
inference was.

Although we focus on batting average in this article, similar
problems may also arise in analyzing sample surveys because of
the need to preserve confidentiality. In a highly stratified survey
in which some of the in-stratum sample sizes are small, reporting
only the sample proportion rather than the number of successes
and the number of trials may help in preserving anonymity for
respondents.

To see that this problem may lead to surprising conclusions,
consider the following example. Suppose that we are told that
Player A and Player B, selected at random, posted batting av-
erages of .833 and .338, respectively, in a recent season. Our
initial reaction might be to think that Player A has the better true
chance of getting a hit. Once we consider, however, that players
who play regularly tend to post batting averages between .200
and .400, we realize that Player A has probably batted only a
handful of times. In fact, the single most likely scenario is that
he has collected five hits in six at bats. To achieve a batting av-
erage of .338, however, Player B must have batted at least 65
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Figure 1.

times, which in itself is an indication of quality. That .338 is also
a higher-than-usual batting average provides additional evidence
that it is Player B who has the better true chance of getting a hit.
In fact, we find in this article that in the context of present-day
major league baseball, .338 is among the most impressive of
all batting averages in the sense that it leads to a high posterior
mean for true ability. Among batting averages likely to occur
in practice, .334 is the batting average that leads to the highest
posterior mean for true ability.

We treat this problem in a Bayesian fashion, using data from
the 2003 and 2004 major league baseball seasons to produce our
prior. In Section 2, we develop a model for the joint distribution
of at bats, hits, and true ability. The details of this model are
specific to the context we consider, but the general approach is
adaptable to other settings. In Section 3, we use this model as a
prior distribution, and we update it based on the observed batting
average to make inference on the distribution of true ability. We
summarize the results using both tables and graphs. In Section 4,
we address modeling concerns related to selection bias. Section
5 summarizes our results.

2. THE PROPOSED MODEL

In this section, we develop a model for the joint distribution of
the random variables at bats (A), true ability (P), and hits (H).
We first find a model for the marginal distribution of at bats. We
then model the conditional distribution of hits given both at bats
and true ability. Finally, we model the conditional distribution of
true ability given at bats. We provide empirical and theoretical
justifications for each modeling step, and we conclude the section
with an informal test whose outcome suggests that our model
captures the important features of the data. Two key features of
the data that are captured by the model are that the distribution
of at bats is right-skewed and that players with more at bats tend
to be better than players with fewer at bats.

The data that we used, which was drawn from more complete
data given in the Lahman (2004) database, consists of at bat and
hit totals for all nonpitchers who batted at least once during the
2003 and 2004 seasons. Players who had at least one at bat for
more than one team in a particular season appear in the data
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Histograms of player at bats in 2003 and 2004.

multiple times, once for each team.

To model the marginal distribution of at bats, we first made
histograms of player at bat totals for the 2003 and 2004 seasons.
Figure 1, which presents these histograms side by side, shows
that the marginal distribution of at bats was roughly the same for
the two seasons. It also suggests that the marginal distribution
for at bats may be well approximated by a fairly simple curve.
We constructed a probability mass function for at bats by first
constructing a probability density supported on the real numbers,
then interpreting the probability assigned to the interval [a —1, a]
as the probability of exactly a at bats.

Based on Figure 1, we took this probability density function to
be composed of three parts, namely a decreasing quadratic por-
tion supported on [0, 243], a flat portion supported on [243, 486],
and a decreasing linear portion supported on [486, 729]. The
break points 243, 486, and 729 were chosen both to agree with
the histograms and to be easily interpretable in terms of the num-
ber of games, 162, in a full season. For example, the flat portion
supported on [243, 486] includes players who batted between
1.5 and 3.0 times per game. Specifically, we took the probability
of a player having exactly a at bats to be given by

d(a) = / o, (1)

where f is the density function

1 3(x — 243)2
1+ , 0<x <243,

850.5 2432

! 243 < 486

f@) = 850.5° = =0
1 —4

1 (89N e < x <720,
850.5 243

0, otherwise,

which agrees closely with the histograms in Figure 1. One pos-
sible objection to this model for at bats is that since there is no
theoretical bound on the number of at bats a player could have
in a season, we should not use a model with only finite support.
However, no batter has ever had more than 705 at bats in a sea-
son, and if higher totals were to become common, that would
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Figure 2.  Plot of batting average versus at bats for 2004. The extra line is a lowess fit.

indicate a corresponding increase in batting averages that would
also require us to adjust the other parts of our model.

We next turned to the problem of modeling the distribution of
hits given at bats and true ability. It is clear that there would be
computational advantages if the distribution of H given A = a
and P = p were simply a Binomial(a, p) distribution. However,
there are reasons to doubt that such a model is appropriate. Inter-
estingly, there are both arguments that H should show extrabino-
mial variability and arguments that H should show subbinomial
variability.

The argument that H should show extrabinomial variability
rests on the observation that players do not have the same chance
of success in each at bat. This occurs because, among other dif-
ferences, some pitchers are better than others, some ballparks
offer better hitting conditions than others, and some configura-
tions of baserunners are more conducive to hitting than others.
If a hitter’s chance of success in a given at bat is independently
drawn from some distribution with mean p, then the distribution
of hits given at bats will show extrabinomial variability. In such
a case we might want to try a model such as the one proposed
by Rudolfer (1990).

The argument that H should show subbinomial variability
rests on the observation that while players do not have the same
chance of success in each at bat, many of the different situations
that players encounter occur with orderly frequencies rather than
at random. Some ballparks offer better hitting conditions than
others, but the number of games a full-time player gets in each
ballpark is fixed in advance. Since each game features roughly
the same number of at bats (typically three to five), the situation
is similar to one in which a player has a fixed number of at bats at
each of several different chances of success. Such a set-up leads
to subbinomial variability. In such a case we might use a model
such as the one proposed by Kupper and Haseman (1978).

What seems to be the case, however, is that the conditional
distribution of H given A = a and P = p shows neither ex-
trabinomial nor subbinomial variability. Instead, the factors de-
scribed in the last two paragraphs essentially cancel each other
out, leading to a level of variability which is well captured by
a binomial model. Since baseball has been featured in a num-

ber of articles in the statistical literature, the question of how
to model hits given at bats and ability has arisen before. Berry,
Reese, and Larkey (1999) used a binomial model for hits given
at bats and true ability in their examination of changing skill lev-
els in baseball across time. Casella and Berger (1994) modeled
at bats as independent Bernoulli trials in their study of how to
estimate a binomial success probability on the basis of a certain
kind of selectively reported data. Albright (1993), in analyzing
consecutive runs of successes and failures for batters in the 1987
to 1990 seasons, found no evidence that players are more or
less streaky than would be expected if at bats are in fact inde-
pendent Bernoulli trials. In the next paragraph, we consider one
additional piece of evidence for this position.

One way to examine whether the distribution of hits given at
bats and true ability has binomial variability is to look at data for
consecutive years. A player’s true ability is unlikely to change
much in one year, meaning that the difference in batting average
between two years can be used to assess the variability in batting
average in a single year. Suppose that a player collects %; hits
in g; at bats for consecutive years i = 1, 2. One estimate of his
true ability is his overall success rate

. hith
ay+ay’
Since a Binomial(a;, p) distribution has variance a; p(1— p), the
variance of batting average h; /a; is p(1— p)/a; under a binomial
model, and the variance of the difference h1/a; — hy/as is the
sum p(1 — p)/a; + p(1 — p)/a>. We looked at the group of
players who had at least 300 at bats for the same team in each
of 2003 and 2004, and we considered the normalized value

hz  hy
as aq
\/ﬁ(l - p) (a5 +a5")

where p = +a, and the subscripts 3 and 4 correspond to
2003 and 2004, respectively. If the conditional distribution of hits
given at bats and true ability does in fact show binomial variabil-
ity, these values should be distributed like independent standard

h3+hy
a
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normal random variables. A normal probability plot of these
values was constructed, and this plot showed no noticeable de-
parture from binomial variability. We thus model the conditional
distribution of H given A = g and P = p as Binomial(a, p).
The final piece needed for our model is the conditional dis-
tribution of true ability given at bats. Since true ability p is a
probability, the natural family to turn to is the Beta family of
distributions. To simplify the modeling process, we proceed in
two steps, first modeling the mean of ability given at bats, then
considering the appropriate level of variability. Thus, rather than
modeling the usual parameters « and 8 for the Beta family, we
model the parameters w and ¢, where = aaTﬂ is the mean and
¢ = a + B is a mass parameter controlling the amount of spread
around the mean. Figure 2 gives a plot of batting average versus
at bats for the 2004 season. This plot, which is similar to the
one obtained for the 2003 season, also include a lowess fit (see
Cleveland 1979), and this lowess fit suggests that the mean of
ability given at bats can be well approximated by a piecewise
linear function of at bats. Specifically, it appears that two lin-
ear pieces are needed, one to account for the fairly steep grade
from O to about 162 at bats and the second to account for the
more gradual increase from about 162 at bats onward. Thus, we

modeled the mean of ability as

202 + a/3000,
256 + .00008(a — 162),

a <162,

a > 162, )

pla) = {
where the break point 162 was chosen both to agree with Figure
2 and to be easily interpretable in terms of the 162-game season.
In modeling the mass parameter ¢, we run into one theoretical
concern. Since better players play more, we expect the distribu-
tion of P for batters with, say, 500 at bats to be stochastically
larger than the distribution for batters with, say, 200 at bats. If
we allow the mass parameter ¢ to be a function of the num-
ber of at bats a, however, such a stochastic ordering need not
hold. Thus, we elected to look for a single mass parameter ¢
that will be applied for all values of a. To find this value c, we
first plotted the variability of batting average as a function of
at bats. For at bat bins [290, 310), [310, 330), ..., [690, 710),
we computed within-bin empirical standard deviations based on
combined data from both the 2003 and 2004 seasons. These em-
pirical standard deviations are plotted against their midpoints
300, 320, ... , 700 in Figure 3. Figure 3 also gives curves repre-
senting the theoretical standard deviation (as a function of a) for
various choices of the mass parameter c. These curves are drawn
using the easily-shown fact that the variance of batting average
given at bats is given by

2
var <ﬁ) — lu(a) + (1 _ l) (M) — (@)
a a a c+1

Based on the results shown in Figure 3, the value ¢ = 900 was
chosen.

Atthis point, our model is complete. As an informal test of this
model, we simulated several seasons worth of data. Specifically,
since there were 670 (a, h) pairs in the data for the 2004 season,
we took each season to consist of 670 independently simulated
values for the triplet (a, p, h). We then made plots of batting
average h/a against at bats a for these 670 values. Figure 4
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Figure 3. Empirical bin-by-bin standard deviations for batting average. The

curves give theoretical standard deviations for three choices of the mass param-
eter c.

gives plots for four simulated seasons together with plots of the
actual data for 2003 and 2004. The strong similarity between the
simulated and actual data suggests that the model captures the
important features of the data.

3. FINDING THE POSTERIOR DISTRIBUTION

In order to estimate p on the basis of batting average alone, we
need to be able to compute the distribution of true ability given
batting average. This calculation is facilitated by the fact that
the Binomial and Beta distributions are conjugate distributions
(see, e.g., Berger 1985). Suppose that a player has a at bats
and 4 hits. Since the player has a at bats, the prior distribution
of P given A = a is a Beta(cu(a), c(1 — u(a))) distribution.
Updating this on the basis of 4 hits in a at bats, we find that the
posterior distribution is a Beta(cu(a) + h, c(1 — u(a)) +a —h)
distribution. In our model, this Beta(cu(a) + h, c(1 — u(a)) +
a — h) distribution is the conditional distribution of P given a
and h.

When we know only the batting average B = B(a, h) rather
than the full pair (a, &), the updating process is somewhat more
complicated. Instead of simply finding the distribution of P con-
ditional on a single (a, /) pair, we need to find the distribution
of P conditional on a collection of (a, &) pairs, namely all those
pairs that lead to the batting average of interest. Given that the
batting average arose with a certain number a of at bats, the pos-
terior distribution of P is a Beta distribution as described above.
Thus, the marginal posterior distribution of P given the batting
average is a mixture of Beta distributions, where the mixing
weights are the conditional probabilities that the batting aver-
age of interest arises in each particular way. Since a satisfies
1 < a < 729, a given batting average can arise in only a finite
number of ways, meaning that the mixture is a finite mixture.
Let (a1, h1), ..., (ak, hg) be alist of all the ways in which the
batting average b can arise. Then the posterior distribution of P
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Figure 4. Batting average versus at bats for 2003 (lower left), 2004 (lower right), and for four datasets simulated using the model from Section 2.

given B = b is the mixture

ZK: P (h; hits and a; at bats)
= \ XX, P(hj hits and a; at bats)

xBeta(cu(a;) + hi, c(1 — w(a;)) +a; — hi).(3)
The probabilities P (4 hits and a at bats) may be computed using
the fact that given that the number of at bats is A = a, the number

of hits & has a Beta — binomial distribution. Specifically, the
probability of /4 hits and a at bats is given by

P(H=h,A=a)=P(A=a)P(H=h|A=a)
=d(a)P (H = h|h ~ Binomial(a, p)

and p ~ Beta(cu(a), c(1 — u(a))))
_ : ayN a—h
= d(a) p:o[(h>” (1= py"]

» I'(c)

[(ep(a)l (el — u(a)))

— d@) ( I'(a+ DT (c) ) )
B F(h+ D@+ 1—-mT(ep@)l(c(l —pn@))

1
f Oph+cu<a>—1(1 _ pya-hte—p@)-1,4,
p:

cr@=1g _ p)c(l_”(“))_ldp,

— d@) < C(a+ DI h+cu(@)l(a —h +c(d — u(a))) )
B T'(h+ DI (a+1—mC(cp@) (el —p@)ra+c) )
4

where I' (o) = fxoio x*~le™*dx and d(-) is defined in Equation
(D).

Using Equations (3) and (4), we can compute the posterior
distribution for P given the batting average b, and similar con-
siderations allow computation of the posterior distribution of, for
example, A given b. These posterior distributions can be sum-
marized in a number of ways, but one obvious summary consists
of reporting the posterior mean and standard deviation. Figures
5 and 6 give the posterior mean and standard deviation of true
ability P as a function of the batting average b. Rather than plota
point for every single batting average, a point is plotted only for
those batting averages b whose probability P(B = b) is greater
than one in a billion, the others being essentially impossible to
see in practice. These figures show that the batting averages cor-
responding to the highest posterior means lie mainly in the range
.200 to .400 of ordinarily observed batting averages. These bat-
ting averages are also, however, the least informative in the sense
that the posterior standard deviation for P tends to be large.

The ten single batting averages (with probabilities larger than
one in a billion) with the highest and lowest posterior means
are given in Table 1. What is apparent from Table 1 is that a
batting average cannot correspond to a high posterior mean for
P unless a large number of at bats are required to achieve that
batting average. We also see, however, that a batting average b
achievable in fewer at bats than another batting average may still
correspond to a higher posterior mean for P provided that b is
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high enough. The values corresponding to the lowest posterior
means for P are those batting averages that are either achievable
in just a few at bats or both achievable in a small number of at
bats and extremely unlikely to be achieved in a large number of
at bats.

4. SELECTION BIAS

In our modeling in Section 2, we behaved as if the mean batting
average for all players with a at bats were an unbiased estimate
of the true ability level for players who batted a times. That as-
sumption may be reasonable if a is large, but for players who
batted only a few times, we might worry about selection bias.
Specifically, players who perform well in just a few at bats are
likely to be given more opportunities, while players who perform
poorly in just a few at bats are likely to see their opportunities
reduced or even eliminated. Thus, we might expect the observed
batting averages for players who batted just a few times to under-
estimate their true ability levels. To explore the extent to which

Posterior mean for P as a function of batting average.

this sort of bias might affect our results, we considered several
alternatives to the mean model given in (2). These alternatives
were obtained by making different choices for the slope of the
mean as a function of a on the interval [0, 162]. In the most ex-
treme alternative considered, we modeled the mean of ability as
a linear function of a, in effect taking the higher observed slope
on the interval [0, 162] to be entirely due to selection bias.

The alternatives considered led to only minimal changes in the
list of batting averages corresponding to the very highest pos-
terior means for P. Posterior means for batting averages above
400 increased in a relative sense, however, and the list of bat-
ting averages corresponding to the very lowest posterior means
changed noticeably, with the list becoming dominated by batting
averages that are both low and achievable in a low number of at
bats.

5. SUMMARY

Using Bayesian methods, we have treated the problem of
using batting average alone to estimate a baseball player’s chance
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Posterior standard deviation for P as a function of batting average.



Table 1.
chance of occurring.

Batting averages corresponding to the highest and lowest posterior means for p. Attention is restricted to batting averages b with at least a one-in-a-billion

Posterior Posterior Posterior Posterior Posterior Posterior
b mean for P SDfor P mean for A b mean for P SD for P mean for A
334 .301 .015 505.3 .000 .203 .013 4.7
332 295 .018 441.6 1.000 204 .013 1.3
335 293 .019 419.7 .500 .205 .014 4.6
331 289 .022 398.8 .667 .205 .013 3.6
336 289 .024 390.1 .067 .205 .013 18.6
.330 286 .025 390.7 .059 .205 .013 19.6
.337 286 .027 375.5 .063 .205 .013 19.3
.399 286 .023 230.1 .071 .205 .013 18.3
401 286 .023 224.2 .056 .205 .013 20.2
.363 286 .031 317.8 .053 .205 .013 20.9
REFERENCES

of getting a hit. We have shown that in this restricted information
setting, the most impressive batting averages are not the highest
batting averages, but the batting averages that are both high and
impossible to attain in a small number of at bats. We have also
shown that no matter how high it may be, a batting average that
is attainable in just a handful of at bats is evidence not that a
player has a good chance of getting a hit, but that he has a poor
chance. We have found that in the context of present-day major
league baseball, .334 is the batting average that corresponds to
the highest posterior mean for true ability. Though our modeling
process involved the use of data specific to the context we con-
sidered, the general approach is adaptable not only to different
baseball contexts, but also to any situation in which, because of
space considerations, a poorly designed data collection process,
or a data-reporting process designed to preserve confidentiality,
a probability must be estimated without knowing the number of
trials or the number of successes.

[Received October 2006. Revised December 2006. ]

Albright, S. C. (1993), “A Statistical Analysis of Hitting Streaks in Baseball,”
Journal of the American Statistical Association, 88, 1175-1183.

Berger, J. O. (1985), Statistical Decision Theory and Bayesian Analysis (2nd
ed.), New York: Springer-Verlag.

Berry, S. M., Reese, C. S., and Larkey, P. D. (1999), “Bridging Different Eras in
Sports,” Journal of the American Statistical Association, 94, 661-676.

Casella, G., and Berger, R. L. (1994), “Estimation With Selected Binomial In-
formation or Do you Really Believe Dave Winfield is Batting .471?” Journal
of the American Statistical Association, 89, 1080-1090.

Cleveland, W. S. (1979), “Robust Locally Weighted Regression and Smoothing
Scatterplots,” Journal of the American Statistical Association, 74, 829-836.

Efron, B., and Morris, C. (1975), “Data Analysis using Stein’s Estimator and its
Generalizations,” Journal of the American Statistical Association, 70, 311—
319.

Kupper, L. L., and Haseman, J. K. (1978), “The Use of a Correlated Binomial
Model for the Analysis of Certain Toxicological Experiments,” Biometrics,
34, 69-76. -

Lahman, S. (2004), “The Lahman Baseball Database.” Available online at Attp:
//www.baseballl.com.

Lewis, M. (2003), Moneyball: The Art of Winning an Unfair Game, New York:
W. W. Norton.

Rudolfer, S. M. (1990), “A Markov Chain Model of Extrabinomial Variation,”
Biometrika, 77, 255-264.

The American Statistician, May 2007, Vol. 61, No. 2 111


http://www.ingentaconnect.com/content/external-references?article=0162-1459()88L.1175[aid=1302235]
http://www.ingentaconnect.com/content/external-references?article=0162-1459()94L.661[aid=2999937]
http://www.ingentaconnect.com/content/external-references?article=0162-1459()74L.829[aid=96547]
http://www.ingentaconnect.com/content/external-references?article=0162-1459()70L.311[aid=218569]
http://www.ingentaconnect.com/content/external-references?article=0162-1459()70L.311[aid=218569]
http://www.ingentaconnect.com/content/external-references?article=0006-341x()34L.69[aid=365460]
http://www.ingentaconnect.com/content/external-references?article=0006-341x()34L.69[aid=365460]

