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PROLOGUE: REMARKABLE RESIDUALS

In a scene early in Indiana Jones and the Last Crusade, Pro-
fessor Jones concludes his lecture on the archaeologist’s endless
search for lost antiquities with the admonition “ . . . and X never,
ever marks the spot.” This scene portends a later one wherein
Indy discovers a secret passageway to the Knight’s Tomb under
a giant Roman numeral ten embedded in the tiled floor of an old
church, inducing him to chuckle “ . . . ten, X marks the spot.”

Statistics will never have the allure or the cachet of ar-
chaeology, and no professor of statistics will ever possess the
Hollywood-imbued charm or magnetism of Professor Jones.
Nevertheless, students of statistics can still experience the same
sense of irony, humor, and interest-piquing discovery embodied
in these scenes from The Last Crusade.

Leonard A. Stefanski is Professor, Department of Statistics, North Carolina State
University, Raleigh, NC 27695-8203 (E-mail: stefanski@stat.ncsu.edu). The au-
thor acknowledges technical assistance from Homer Simpson, please see Figure
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article.

For example, imagine the reaction of a student who, upon
completing an assignment of fitting a given multiple linear re-
gression model and examining residual plots, is confronted with
the residual plot in Figure 1(a), which contradicts G.E.P. Box’s
famous quotation about all models being wrong in the same way
that Professor Jones’s discovery under the Roman numeral ten
contradicted his assertion that X never marks the spot (a resid-
ual plot version of which appears in Figure 1(b)). Of course, if
the regression assignment is due just prior to a “big game,” then
the student might be more intrigued by residual plots of the sort
in Figures 1(c) and (d). Figure 1(e) depicts Homer Simpson ex-
plaining how to embed images in regression residual plots. And if
the residual plots in (a)–(e) are not attention-getting enough, the
student who is unexpectedly confronted with the residual plot in
Figure 1(f) is certainly going to be buffaloed (perhaps “bisoned”
is taxonomically more correct but not grammatically).

1. INTRODUCTION

Several colleagues (D. Boos, S. K. Ghosh, H. Zhang, H. Bon-
dell and L. Li) and I recently formed a research group to address
problems of mutual interest in variable and model selection.
Among the tasks that we set for ourselves were the construction
of test datasets for illustrating and comparing the performances
of the sundry approaches to variable selection available in the lit-
erature, and the construction of novel datasets for use in teaching
variable selection in undergraduate and graduate level courses.
This article is directed at the latter objective.

We show how to generate a linear regression dataset
{X1,i , . . . , Xp,i , Yi}ni=1 with the property that if the “correct”
model is fit to the data, then the usual plot of residuals versus
predicted values manifests a predetermined black-and-white im-
age, that is, black pixels are mapped at the plotted (predicted,
residual) pairs. The residual plots in Figure 1 are from six dif-
ferent, four-variable, multiple linear regression model datasets
constructed using the algorithm in Section 2.

Apart from the obvious entertainment value, the primary ped-
agogical value of datasets so constructed lies in their ability to
generate a certain “How-did-you-do-that?” curiosity among stu-
dents that is not so easy to generate in other ways. The answer
to this natural question is accessible to any student with a work-
ing knowledge of projection matrices at the level of Christensen
(2002). Thus, graduate students and some advanced undergrad-
uates should be capable of not only understanding the method
of construction, but of programming it, and modifying the basic
algorithm.
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Figure 1. Some remarkable residual plots. Linear regression residuals are plotted versus predicted values for six different datasets.
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A black-and-white digital image is essentially nothing more
than a scatterplot of abscissa-ordinate pairs indicating the lo-
cations of the black pixels. Now consider labeling the abscissa
“Predicted Values” and the ordinate “Residuals” and you have
a residual plot that displays an image. Well, it is not quite that
easy. Residuals and fitted values have certain mathematical prop-
erties that the ordinates and abscissae of an image generally do
not possess, and this presents one hurdle to clear. However, the
greater problem is working backwards from given target vectors
of residuals and fitted values to find a dataset such that a regres-
sion model fit to the data has the desired target residuals and
fitted values.

2. HOW DID YOU DO THAT?

Suppose that Ŷ0 and R0 are given n× 1 vectors of predicted
values and residuals. Our interest lies in the case in which the
pairs (Ŷ0,i ,R0,i ), i = 1, . . . , n, correspond to the black-pixel
locations in a black-white image, and thus the image is manifest
in the scatterplot of R0 versus Ŷ0. We now show how to generate
regression data, that is, an n×pmatrix X, and an n×1 response
vector Y, with the properties that,

PX∗Y = Ŷ0,

(In − PX∗)Y = R0, (1)

where PX∗ = X∗(XT∗X∗)−1XT∗ , X∗ = [1n : X], 1n is an n × 1
vector of ones, and In is an n × n identity matrix. Note that X
does not contain a column of ones.

Consider that if a solution (X,Y) to (1) exists, then RT

0 Ŷ0 =
YT (In − PX∗)PX∗Y = 0, that is, residual and fitted values are
orthogonal. Thus, a solution exists only if

RT

0 Ŷ0 = 0. (2)

The point is that real regression residuals and predicted values
are orthogonal. But, because the vectors (Ŷ0,R0) that we are
interested in pretending are residuals and predictions are deter-
mined by the image we want to display, it will seldom be the case
that RT

0 Ŷ0 = 0. However, in Section 2.2 we describe a method
to orthogonalize any image, that is, to ensure RT

0 Ŷ0 = 0, that
has minor impact on the visual quality of the image. Thus, we
proceed assuming that (2) holds.

2.1 Solution for R0 and Ŷ0 Orthogonal

Note that there aren(p+1) free “variables” in (X,Y) and only
2n equations in (1), thus multiple solutions exist. We provide one
method of solution that allows for approximate control of the
regression coefficients in the fitted model. To this end suppose
that β0 and βββ = (β1, . . . , βp)

T are given with |βj | > 0 for
j = 1, . . . , p.

Write Y = 1nβ0+Xβββ+εεε. This looks like a statistical model,
but it is not. For our purposes (X,Y) are mathematical vari-
ables whose values are to be determined so that (1) holds. The
reexpression Y = 1nβ0 + Xβββ + εεε is used to transform vari-
ables from (X,Y) to (X, εεε). In terms of (X, εεε), Equations (1)

are transformed to

1nβ0 + Xβββ + PX∗εεε = Ŷ0,

(In − PX∗)εεε = R0, (3)

The second equation in (3) implies that (In − PX∗)R0 = R0
which in turn implies that PX∗R0 = 0n, or alternatively that: 1)
1TnR0 = 0; and 2) XTR0 = 0p. The first equality imposes another
condition, necessary when an intercept is included in the model
to be fit, on the target residual vector R0 that is easily satisfied by
centering. The second condition is satisfied provided X = (In−
PR0
)M for any n × p matrix M, where PR0

= R0RT

0/(R
T

0 R0).
Rewriting Equations (3) in terms of (εεε,M) results in

1nβ0 + (In − PR0
)Mβββ + AMεεε = Ŷ0,

(In − AM)εεε = R0, (4)

where

AM =W(WTW)−1WT , and W = [1n : (In − PR0
)M]. (5)

The second equation in (4) implies that (In −AM)R0 = R0 and
AMR0 = 0, which in turn implies that

εεε = R0 + AMZ, (6)

for any n× 1 vector Z. Substituting εεε defined in (6) into the first
equation in (4) results in

1nβ0 + (In − PR0
)Mβββ + AMZ = Ŷ0. (7)

We use (7) to develop an iterative algorithm for determining M.
Let M1, . . . ,Mp denote the columns of M. Manipulation of (7)
shows it to be equivalent to

Mj∗ =
1

βββj∗


Ŷ0 − 1nβ0 − AMZ+ PR0

Mβββ

−

 p∑
j=1,j 
=j∗

βββjMj





 (8)

for any fixed j∗, 1 ≤ j∗ ≤ p (recall that |βj | > 0 for all j ).
Equations (6) and (8) form the basis of our iterative solution.

First, fix j∗, 1 ≤ j∗ ≤ p. Then compute an n × 1 vector Z,
and an initial matrix M(0) with columns M(0)

1 , . . . ,M
(0)
p . For

the examples in this article the components of Z and M(0) were
generated as independent N(0, τ 2) and N(0, γ 2) random vari-
ables respectively, with τ equal to the standard deviation of the
components of R0, and γ equal to the standard deviation of the
components of Ŷ0. Given the current iteration M(k), M(k+1) is
calculated column-wise as M(k+1)

j =M(k)
j for j 
= j∗, and

M(k+1)
j∗ = 1

βββj∗


Ŷ0 − 1nβ0 − AM(k)Z+ PR0

M(k)βββ

−

 p∑
j=1,j 
=j∗

βββjM
(k)
j





 , (9)
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Figure 2. Bulls-eye data. Main diagonal, plots of Y versus Xj , j = 1, . . . , 6; upper off-diagonal; plots of Xi versus Xj , j = i + 1, . . . , p; lower left, plot of
residuals versus predicted values.

where AM(k) is calculated as in (5) with M replaced by M(k). Note
that only column j∗ of M changes in the iteration. For the exam-
ples in this article convergence was declared when the maximum
absolute component of ���k = (In − PR0

)
{
M(k+1) −M(k)

}
was

less than 10e − 13. The algorithm never failed to converge and
usually did so in fewer than 15 iterations.

Letting M denote the value of M(k+1) upon convergence, cal-
culate εεε according to (6), X = (In − PR0

)M, and Y = 1nβ0 +
Xβββ + εεε. The resulting (X,Y) are such that the least squares
regression of Y on [1n : X], has predicted vector Ŷ0, residual
vector R0, and least squares coefficient estimates approximately
equal to (β0, βββ

T )T . In terms of X∗ = [1n : X], the least squares
estimates (β̂0, β̂ββ

T
)T = (β0, βββ

T )T + (XT∗X∗)−1XT∗ Z, where Z
is the vector in (6). The assertion about the least squares esti-
mates follows from (5), (6), and the fact that XT∗R0 = 0p+1.
Although Z has independent N(0, τ 2) components, it is not in-
dependent of X∗, and thus the distribution, or even the moments,
of (β̂0, β̂ββ

T
)T − (β0, βββ

T )T are not simple. However, it is evident
that if τ is small (τ → 0), then (β̂0, β̂ββ

T
)T − (β0, βββ

T )T is small
(converges to 0p+1).

Finally we note that by appropriate pre-scaling of Ŷ0, we can
arrange for the model coefficient of determination to take on any
desired value.

2.1.1 Summary of Basic Algorithm

Start with orthogonal Ŷ0 and R0. In order to ensure that the
correct model has coefficient of determination equal to R2

0, re-
define Ŷ0 according to

Ŷ0 ← (sR0
/sŶ0

)
{
R2

0/(1− R2
0)

}1/2
Ŷ0,

where s2R0
and s2

Ŷ0
are the sample variances of R0 and the initial

Ŷ0.

1. Choose β0 and βββp×1 with |βj | > 0, j = 1, . . . , p ;

2. Choose j∗ with 1 ≤ j∗ ≤ p ;

3. Generate Zn×1 with independent N(0, τ 2) components;

4. Generate M(0)
n×p with independent N(0, γ 2) components;

5. Iterate M(k) according to (9) until convergence denoting the
final iterate by M;

6. Calculate εεε according to (6);

7. Calculate X = (In − PR0
)M, and Y = 1nβ0 + Xβββ + εεε.

2.1.2 Example: Bull’s Eye Data

For this example 600 points (ti , wi) lying on three concentric
circles were calculated. Thus, the scatterplot of ordinates w ver-
sus abscissae t exhibits a target or bull’s eye pattern. We take

R0 = w and Ŷ0 = (sw/st )
{
R2

0/(1− R2
0)

}1/2
t, where s2w and

s2t are the sample variances of w and t, and the target coefficient
of determination was R2

0 = .75. The orthogonality condition is
satisfied via the circular symmetry, and the scaling in the cal-
culation of Ŷ0 ensures that the constructed data will have least
squares coefficient of determinationR2

0 = .75. Data (X,Y)were
generated using the algorithm in Section 2 with p = 6, β0 = 0,
βββ = (1, 2, 3, 4, 5, 6)T , and j∗ = 6. Convergence was achieved in
eight iterations. The least squares coefficient estimates, including
the intercept, are (−0.03, 0.97, 2.01, 2.96, 3.91, 4.91, 5.89).
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(a) (b)

(c) (d)

Figure 3. Figure (a), nonorthogonal target message with least squares line superimposed; (b) orthogonalization, as evidence by the least squares line, is achieved
by the addition of clustered frame points; (c) orthogonalized message without least squares line; (d) plots of the data from a four-predictor dataset created from the
image.

The data and the residual plot are displayed in Figure 2. Plots
of Y versus each of the six predictors appear along the main
diagonal, whereas plots of predictor pairs appear along the off
diagonal. The plot of residual versus predicted values appears
in the lower left. The embedded-image datasets typically are
large, that is, n is large. Thus, for the data plots in Figure 2 and
in all subsequent figures, only min(n, 500) randomly selected
data points are plotted. However, the residual plots necessar-
ily display all n data points. Note that there is little evidence
in the data plots of the unusual residual-predictor pattern. Pair-
wise predictor collinearity is not visually noteworthy. Also the
nonintercept-adjusted and intercepted-adjusted condition num-
bers of the scaled XTX matrix are 5.06 and 4.32, respectively,
indicating little multicollinearity.

2.2 Nonorthogonal Residual and Prediction Vectors

Figure 3(a) displays the graph of a message to be embedded in
a dataset. Superimposed on the message is the least squares line
obtained by regressing the ordinate on the abscissa. As is, these
points do not satisfy the orthogonality condition (2). (Hopefully
the negative slope is not indicative of future NSF funding lev-

els!) However, the least squares line suggests a remedy. Adding
leverage points to the upper-right and lower-left corner of the
plots would rotate the least squares line toward the horizontal.
In fact, it is a reasonable graduate-level exercise to determine an-
alytically two corner locations and the numbers of points needed
at each location so that the least squares line has slope exactly
equal to zero. This solution works, but has the undesirable and
unnatural feature of creating datasets with numerous replicate
observations at two points.

Figure 3(b) illustrates a more palatable solution. Note the
frame around the message, and especially notice that the points
framing the message have higher concentrations in the upper-
right and lower-left corners. The nonuniform concentration of
frame points is determined precisely so that the least squares
line fit to the new set of points (the original message points and
the frame points) has zero slope, thus ensuring the orthogonal-
ity required by (2). This is accomplished by using a parametric
frame of points where the parameter controls the amount of clus-
tering to either set of opposing corners. Figure 3(c) shows the
message with the frame but without the least squares line over-
laid. Figure 3(d) displays plots of the data from a four-variable
dataset constructed using the algorithm in Section 2 having the
framed message as its embedded residual plot.
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Figure 4. Figure (a), nonorthogonal target image with least squares line superimposed; (b) orthogonalization, as evidence by the least squares line, is achieved by
the addition of clustered frame points; (c) orthogonalized image without least squares line; (d) plots of the data from a six-predictor dataset created from the image.

The parametric frame is constructed as follows. Suppose that
the four points (xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax,

ymin) with xmin < xmax and ymin < ymax define the corners of
a box that frames the message/image of interest. A parametric
frame is created by taking a set of equally spaced points 0 =
u1 < u2 < · · · < um−1 < um = 1 and raising them to a
power α > 0. The lower edge of the frame has abscissae given
by xmin + (xmax − xmin)u

α
j and common ordinates ymin. The

upper edge of the frame has abscissae given by xmin + (xmax −
xmin)(1 − uαj ) and common ordinates ymax. The left edge has
common abscissae xmin and ordinates ymin + (ymax − ymin)u

α
j ;

and the right edge has common abscissae xmax and ordinates
ymin+ (ymax− ymin)(1−uαj ). These frame points are appended
to the message/image data of interest. When α = 1 the points on
the frame are equally spaced along the segments on which they
lie. As α→ 0 equal numbers of points converge to the upper-left
and lower-right corners; whereas as α → ∞ equal numbers of
points converge toward the lower-left and upper-right corners.
Thus, by taking m large enough to ensure sufficient leverage,
varying α over (0,∞) can change the slope of a regression line
fit to the totality of the points continuously from negative to
positive. A computer program can be written to solve for the
particular value of α yielding zero slope. This is how the frame
points were determined for Figure 3(b), also displayed in Figure
3(c) without the least squares line superimposed.

Some images look better with a fuzzy frame, see for exam-
ple Figure 1(b)–(f). Fuzzy frames are created by replacing the

constant abscissae and ordinates in the rigid-frame construc-
tion with random vectors. For example, the lower edge of a
fuzzy frame still has abscissae given by xmin+ (xmax−xmin)u

α
j ,

j = 1, . . . , m, but the common ordinates ymin are replaced by
an m × 1 vector of independent N(ymin, η

2) random variables
where η controls the fuzziness.

The parametric framing strategy works with images as well.
Figure 4(a) displays the author’s black-and-white rendition of
a famous image of R. A. Fisher working at a hand calculator.
The overlaid least squares line again reveals the lack of orthog-
onality between the raw image’s ordinate and abscissa vectors.
The addition of parametric frame points calculated as described
above induces orthogonality as is evident in Figure 4(b) and (c).
Finally, Figure 4(d) displays plots of the data from a six-variable
dataset constructed using the algorithm in Section 2 having the
framed image as its embedded residual plot.

3. REMARKABLE RESIDUALS REDUX

We now show a few additional residual plots of general in-
terest. Our intent is to illustrate a range of possibilities to help
stimulate readers making their own plots.

Although often too much emphasis is placed on normality of
the equation errors in multiple linear regression, students are nev-
ertheless trained to check for departures from normality by ex-
amining residuals. Imagine the reaction of a student, having been
so instructed to check for normality of the errors, to the residual

168 Teacher’s Corner



(b)(a)

Figure 5. Two Gaussian residual plots.

plot in Figure 5(a)—looks pretty normal to me! Of course, it is
difficult to imagine any residual plot being more Gaussian (Carl
Friedrich Gauss(ian), that is) than the one in Figure 5(b).

Note the lack of a frame in Figure 5(a). A frame is not nec-
essary due to the symmetry of the normal density. The image in
Figure 5(b) is the author’s rendition of a well-publicized draw-
ing of Carl Friedrich Gauss. Comparison of Figure 5(b) to the
popular drawing of Gauss shows that the former has much less
black area translating to far fewer observations in the constructed
dataset (smaller n). Image datasets can be quite large and often
some preprocessing with an image-editing software program is
required to reduce the datasets to a manageable size; see the
Appendix (p. 175).

The Department of Statistics at NCSU has a long (65 years and
counting) and storied past. Although the reports that Patterson
Hall is haunted have never been verified, it is likely that statistics
students at North Carolina State University would conclude that
the ghosts of statistics present and past were astir if either of the
residual plots in Figure 6 appeared on their computer monitor.

Some statisticians have strong prior opinions about what to
expect from data. Perhaps such statisticians would not be at all
surprised to see residual plots like those in Figure 7 appear on
their computer screens.

The residual plots in Figure 8 will catch students off guard
initially, but closer inspection will reveal something fishy about
them. However, contrary to first impressions, these are not resid-
ual plots from a Poisson regression model.

Famous quotations about statistics make good fodder for hid-
den messages. In addition to their entertainment value, they com-
plement the professional statistician’s academic training. Two
such quotes are shown in the residual plots in Figure 9. The
origins of the “Damn Lies” quotation has never been firmly es-
tablished, but the author has recently obtained new evidence
pointing toward the former republican president. (Although
many would dispute attribution to the former president, there
is widespread sentiment that the essence of the quotation was a
central tenet of Reaganomics.) In addition to offering sound ad-
vice to anyone interpreting statistics, the second quotation also

Figure 6. The National Science Foundation’s VIGRE program has done much to shape departmental life at NCSU in recent years. However, the core philosophy
of the department dates back to its origins, and to the leadership provided by its first head, Gertrude Cox.
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Figure 7. Two preposterous posterior residual plots.

Figure 8. Two fishy residual plots.

Figure 9. Two famous quotations about statistics.
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Figure 10. Model building wisdom from G.E.P. Box.

suggests that the study of “vital statistics” is one of the more in-
teresting subfields of our discipline. (The sensitive reader should
bear (not bare!) in mind that bikinis are worn by both women
and men.)

4. VARIABLE SELECTION PROPERTIES

The embedded-image datasets can be used for entertaining
examples as is, or additional uninformative variables can be ap-
pended to the set of explanatory variables and then used for
variable-selection exercises. The difficulty of identifying the
correct set of predictors from among a large set of candidate
predictors is largely dependent on the number of uninformative
variables and the strength of the relationship between the re-
sponse and the informative variables. Both of these factors are
easily controlled. The data-construction algorithm in Section 2
allows the correct-model coefficient of determination, R2

0, to be
specified, and we can generate as many uninformative predictor
variables as we want. We now illustrate the construction of suit-
able datasets with an example. Section 5.1 (p. 173) contains a
related example.

4.1 Box’s Model Quote

Two six-variable datasets were constructed using the algo-
rithm in Section 2 having the residual plot in Figure 10. One
with R2

0 = 0.15, the other with R2
0 = 0.90. Next 100 uninfor-

mative predictors were generated and appended to each set of
six informative predictors. Then the columns of the predictor
matrices were randomly permuted to obscure the positions of
the informative variables.

We ran forward and backward selection with slentry/slstay=
.05, .01, and .001 on both datasets. A summary of the results
is apparent in the residual plots of the selected models in Fig-
ure 11. For the dataset with the weaker signal (R2

0 = 0.15),
forward selection with slentry = .01, FS(.01), identifies the cor-
rect six-variable model, whereas the FS(.05) model is too large
(nine variables) and the FS(.001) is too small (two variables).
The backward selection model with slstay= .05, BS(.05), is too

large (nine variables), but both the BS(.01) and BS(.001) iden-
tify the correct model. Model identification for the dataset with
the stronger signal (R2

0 = .90) should be easier and this is the
case. With 100 uninformative variables it’s not surprising that
slentry/slstay = .05 allows some uninformative variables to be
selected. But with R2

0 = .90 all of the informative variables are
highly significant and thus even FS(.001) does not exclude any
of them.

With a little trial and error it is often possible to find a value
of R2

0 such that BS(.05) is too large, BS(.001) is too small, and
BS(.01) is just right (note that Figure 11 already establishes that
this is possible for FS(·)). In fact, for the Box quote residual plot,
setting R2

0 = .033 in the data construction algorithm produces
a dataset with these properties. The relevant point is, that by
varying the number of uninformative variables appended to the
dataset and R2

0, it is possible to construct datasets such that a
cursory application of forward or backward selection will not
reveal the embedded image, but a more creative use of these tools
will be successful. Of course other variable selection methods
can be used, we consider only forward and backward selection
here for simplicity and their accessibility to undergraduates.

5. DATASETS FOR SECOND-ORDER MODELS

The dataset construction algorithm in Section 2 does not al-
low for models with powers and cross-product terms. We now
show how to adapt the basic algorithm to include such models.
We consider a specific quadratic model, but the strategy applies
more generally. Suppose that we want to embed an image in the
residual plot of a “correct” model of the form

E(Y | X∗1, X∗2, X∗3, . . . , X∗p∗)
= β∗0 + β∗1X∗1 + β∗2 (X∗1)2 + β∗3X∗2 + β∗4 (X∗2)2
+β∗5 (X∗1X∗2)+ β∗6X∗3 + · · · + β∗p∗Xp∗ , (10)

where p∗ ≥ 3 and all of the variables in (10) are scalars. The
superscript “∗” in (10) is used to distinguish between the vari-
ables in (10) and those in the matrix version of the linear model
formulation of this model. We write the latter as

E(Y | X) = 1nβ0 + Xβββ, (11)

where X is n×p with p = p∗+3 and has columns X1, . . . ,Xp
such that

X2 = (X1 •X1), X4 = (X3 •X3), X5 = (X1 •X3), (12)

where “A•B” denotes the Hadamard (element-wise) product of
the vectors A and B.

As in Section 2 our goal is to determine (X,Y) satisfying the
conditions in (1). The difference is that we now have additional
constraints on the columns of X. It is still the case that X =
(In − PR0

)M for some matrix M, that is, Xj = (In − PR0
)Mj ,

j = 1, . . . , p. In terms of the columns of M the constraints (12)
are:

(In − PR0 )M2 = (In − PR0 )
{[
(In − PR0 )M1

]•[(In − PR0 )M1
]};

(In − PR0 )M4 = (In − PR0 )
{[
(In − PR0 )M3

]•[(In − PR0 )M3
]};

(In − PR0 )M5 = (In − PR0 )
{[
(In − PR0 )M1

]•[(In − PR0 )M3
]}
.

(13)
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Figure 11. Box quote datasets selected-models residual plots. FS, forward selection; BS, backward selection; .05, .01,. 001 slentry/slstay for forward/backward
selection; R2

0 , correct model coefficient of determination.
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The equations in (13) are equivalent to:

M2 = (In − PR0 )
{[
(In − PR0 )M1

]•[(In − PR0 )M1
]}+ PR0 M2;

M4 = (In − PR0 )
{[
(In − PR0 )M3

]•[(In − PR0 )M3
]}+ PR0 M4;

M5 = (In − PR0 )
{[
(In − PR0 )M1

]•[(In − PR0 )M3
]}+ PR0 M5.

(14)

The latter equations suggest some simple modifications of the
algorithm in Section 2.1.1. In Step 2, take j∗ ≥ 6, and in Step
5, in addition to the updating formula in (9), add the following
updating formulas:

M(k+1)
2 = (In − PR0 )

{[
(In − PR0 )M1

]•[(In − PR0 )M1
]}+ PR0 M(k)2 ;

M(k+1)
4 = (In − PR0 )

{[
(In − PR0 )M3

]•[(In − PR0 )M3
]}+ PR0 M(k)4 ;

M(k+1)
5 = (In − PR0 )

{[
(In − PR0 )M1

]•[(In − PR0 )M3
]}+ PR0 M(k)5 .

(15)

The other steps of the algorithm remain unchanged.
This modified algorithm is fast and reliable but has one draw-

back. The numerical error in the computation of the derived-
variable columns, X2, X4, and X5, is great enough to distort the
intended residual image plot when these columns are replaced
by columns recalculated from the base variables X1 and X3. In
other words, the algorithm produces a response vector Y and a
design matrix X = [X1 : X2 : · · · : Xp] with the property that
the residual plot from the regression of Y on [1n : X] exhibits
the intended image. However, the discrepancies in

X2 − (X1 •X1), X4 − (X3 •X3), X5 − (X1 •X3), (16)

although small, are nevertheless large enough that the residual
plot from the regression of Y on [1n,X†] where

X† = [1n : X1 : (X1 •X1) :

X3 : (X3 •X3) : (X1 •X3) : X6 : · · · : Xp] (17)

is distorted unacceptably. This is relevant, because in a model-
finding exercise, one would typically provide to students only the
base variables X1,X3,X6, . . . ,Xp and expect them to construct
the derived variables (squares and cross products) as part of the
model-building exercise. Thus, we want to ensure the residual
plot Y on [1n,X†] is distortion free. We accomplish this with a
second level of numerical fine tuning.

Recall that our objective, in terms of X†, is to have

PX∗Y = Ŷ0, and (In − PX∗)Y = R0, (18)

where now PX∗ = X∗(XT∗X∗)−1XT∗ and X∗ = [1n : X†]. Alter-
natively we seek Y and (X1,X3,X6, . . . ,Xp) to minimize

Q∗(Y,X1,X3,X6, . . . ,Xp)

= ‖PX∗Y− Ŷ0‖2 + ‖(In − PX∗)Y− R0‖2. (19)

In fact, at its absolute minimum Q∗ = 0; however, we
need only ensure that it is acceptably small. For fixed

(X1,X3,X6, . . . ,Xp), Q∗ is a quadratic function of Y and is
minimized at Y = (In − PX∗)R0 + PX∗Ŷ0. Thus, we seek to
minimize

Q(X1,X3,X6, . . . ,Xp)

= Q∗
(
(In − PX∗)R0 + PX∗Ŷ0,X1,X3,X6, . . . ,Xp

)
= RT

0 PX∗R0 + ŶT

0 (In − PX∗)Ŷ0. (20)

So the two-stage algorithm we use to construct quadratic models
with embedded residual plots starts with the calculation of initial
values Ỹ and X̃ using the modifications of Steps 2 and 5 of the
basic algorithm (in Section 2.1.1) described above. Then extract
the base columns X̃1, X̃3, X̃6, . . . , X̃p from X̃ and use these as
starting values in the minimization of Q. For the examples in
this articleQwas minimized by successively minimizing it with
respect to the ith row of the matrix [X1 : X3 : X6 : . . . : Xp],
i = 1, . . . , n, and recycling through rows as needed until Q <
10−8.

For large n the latter sequential minimization can be time con-
suming in the absence of good starting values. However, good
starting values can been obtained by running the modified ba-
sic algorithm several times using different random Z and M(0)

matrices and calculating the overall discrepancy measure

D = ‖X̃2 − (X̃1 • X̃1)‖2
+‖X̃4 − (X̃3 • X̃3)‖2 + ‖X̃5 − (X̃1 • X̃3)‖2 (21)

for each random start, see Equation (16). Then choose as the
initial starting values those X̃1, X̃3, X̃6, . . . , X̃p associated with
the minimum value of D.

5.1 Example: Correct Model Message

Figure 12 displays residual plots embedded in a model fully
quadratic in two variables (five terms) and linear in four other
variables. This is the case described above with p = 9. The
upper-left and -right panels show the residual plot before and
after the fine tuning algorithm described above. The fine-tuning
algorithm is not perfect as is evident by the small perturbations
remaining in the rectangular parametric frame. The lower panel
displays plots of the dataset base variables.

The algorithm produces a response vector Y and six
explanatory-variables columns X1, . . . ,X6, and the “correct
model” for this dataset is fully quadratic in the first two vari-
ables and linear in the latter four. The mismatch between the
actual model and the correct model identified by the residual
plot is resolved once these generated informative predictor vari-
ables are mixed among other uninformative variables creating
a greater challenge for model finding methods. For example,
suppose that five additional uninformative predictor variables,
T1, . . . ,T5 are generated independently of Y. Now put all of
the variables in a new predictor matrix

XNew = [X3 : X4 : X1 : X5 : T1 : T2 : X6 : T3 : X2 : T4 : T5] ,

in the order indicated. Then the correct model for the data
(XNew,Y) is the model in the residual plot. The challenge, of
course, is identifying the correct model terms.
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Figure 12. Residual plots from quadratic models of the form y = β0+β1x1+β2x
2
1 +β3x2+β4x

2
2 +β5x1x2+β6x3+β7x4+β8x5+β9x6. The upper left and

right panels are residual plots before (left) and after (right) the fine tuning algorithm described in Section 5. The lower panel displays plots of the data: response
versus predictor on the main diagonal; predictor versus predictor on the off diagonals. Only base variables are included.

Table 1 compares the results of forward and backward se-
lection applied to the 11 base variables in XNew, their squares,
and the 55 possible cross-product terms (77 total predictors).
Forward selection (slentry = .01) identified an inclusive 14-
variable model. The backward-selection (slstay = .01) model
differed from the forward-selection model in that it contained
one fewer uninformative variable.

With slentry and slstay reduced to .001, backward selection
nails the correct model whereas forward selection finds an inclu-
sive 11-variable model containing two uninformative variables.
However, the two superfluous variables have p values > .3 and
thus are apparent candidates for elimination resulting in the “cor-
rect” model.

Just as with the Box quotation example in Section 4.1, this
example dataset is such that whereas a cursory application of
forward or backward selection will not reveal the hidden mes-
sage, a deeper probing of the data using these basic variable
selection tools will reveal the “correct” model, thus rewarding
the conscientious student.

6. IS THERE A CORRECT MODEL?

Because the datasets constructed by the algorithms in Sections
2 and 5 are not generated from a usual linear statistical model, it
begs the question of what is meant by a “correct” model in the
discussions of variable selection in Sections 4 and 5. Suppose that
data (X,Y) are generated via one of the algorithms in Section 2
and 5. Now suppose that additional variables T are appended to
the predictor matrix. The least squares estimate of the coefficient
vector of T in the linear model containing both X and T is

β̂ββT = {
TT (In − PX∗)T

}−1 TT (In − PX∗)Y

= {
TT (In − PX∗)T

}−1 TTR0, (22)

where PX∗ is the projection matrix of X∗ = [1n : X]. The second
equality, which follows from (1), makes clear that β̂ββT is not a
linear function of uncorrelated, homoscedastic errors, as it would
be if the data were generated according to usual linear model
assumptions. However, if the randomly generated uninformative
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Table 1. Variable selection method comparison for the “Correct Model”
dataset. Inf., informative; Un., uninformative; FS(α), forward selection with
slentry = α; BS(α), forward selection with slstay = α. Table entries are p
values of the final models identified by forward and backward selection; “—”,
variable not selected.

Variable Selection Method

Inf. Un. FS(.01) BS(.01) FS(.001) BS(.001)

x1 < .0001 < .0001 < .0001 < .0001
x2 < .0001 < .0001 < .0001 < .0001
x3 < .0001 < .0001 < .0001 < .0001
x4 < .0001 < .0001 < .0001 < .0001
x7 < .0001 < .0001 < .0001 < .0001
x9 < .0001 < .0001 < .0001 < .0001

x1*x1 0.1253 0.0042 0.3266 —
x3*x3 < .0001 < .0001 < .0001 < .0001
x9*x9 < .0001 < .0001 < .0001 < .0001

x1*x3 0.1694 — 0.4740 —
x2*x9 0.0054 0.0030 — —
x3*x7 0.0020 0.0051 — —

x3*x9 < .0001 < .0001 < .0001 < .0001
x8*x9 0.0089 0.0090 — —

predictors T are such that −T and T are equal in distribution
given X, then β̂ββT has mean zero under repeated sampling of
T by virtue of the fact that β̂ββT is an odd function of T, that
is, β̂ββT (−T) = −β̂ββT (T). In this sense, β̂ββT does have mean 0.
Of course, the sampling theory assumed by variable-selection
methods for the construction of test statistics does not apply.
However, in all of the image-embedded datasets we have studied
thus far, the behavior of test statistics and the selection methods
has not differed noticeably from what would be expected under
usual linear model assumptions.

7. ADDED-VARIABLE PLOTS

The computational algorithms can be used in ways other than
for embedding images in the plot of residuals versus fitted val-
ues. Suppose that R0 and T are such that RT

0 T = 0, RT

0 1n = 0
and the scatterplot of R0 versus T displays an image or mes-
sage. Let T∗ be a random permutation of the rows of T. Next, set
Ŷ0 equal to the residual vector from the least squares regression
of T∗ on [1n : R0]. Now apply the data construction algorithm
in Section 2 to the orthogonal residual and prediction vectors
R0 and Ŷ0, resulting in data (X,Y). Then the augmented data
([X : T],Y) is such that the “correct” model includes only the
variables in X. This is because T is orthogonal to the residuals
from the regression of Y on [1n,X], and the X matrix is con-
structed independently of T (T is not orthogonal to the columns
of X, but they will be nearly so).

Thus, with a large dataset the coefficient of T in the full model
that includes X and T will generally be very near zero and non-
statistically significant (p value≈ 1). Thus any sensible variable
selection approach will discard T and keep all the variables in
X. In addition, the residual and prediction vectors from the cor-
rect model are R0 and Ŷ0 and the scatterplot of R0 versus Ŷ0
is essentially patternless. However, the residual plot of R0 ver-
sus T manifests the desired image or message. Note that this

is not the added-variable (or partial regression) plot R0 versus
(In − PX∗)T. However, because of the near orthogonality of T
and the columns of X the two plots are generally similar.

Figure 13 displays plots of R0 versus T and R0 versus (In −
PX∗)T for three datasets constructed in the manner described
above. In the first dataset the ASA logo is embedded in the plot.
The second dataset is constructed to be consistent with a situation
in which T does not enter linearly into the regression model for Y,
but the added-variable plot indicates including it as a quadratic.
The third dataset is constructed to mimic a case in which T does
not enter linearly, but there is evidence that it should enter via
an appropriate sinusoidal transformation.

8. SUMMARY

We provided an algorithm for generating multiple linear re-
gression data having fixed residuals and predicted values, and
shown how to exploit the algorithm to embed hidden images and
messages in residual plots and added-variable plots. The method
is useful for constructing interesting multiple linear regression
datasets for classroom examples and exercises.

For most undergraduate regression courses, the primary ap-
peal of the method is the construction of interesting and amusing
datasets for simple model-building exercises. For graduate-level
regression courses, particularly ones taught to students famil-
iar with linear models theory at the level of say Christensen
(2002), the method provides not only amusing examples, but
also a means of generating curiosity in the method’s workings
to the extent that inquisitive students will reinforce their under-
standing of linear models theory as they try to master the details
of the algorithm.

By the time this article appears in print the author’s Web page
will contain a link to multiple versions (different p, R2

0) of the
datasets whose residual plots appear in this article. Thus, instruc-
tors who only want to use the datasets for exercises can download
them. In addition, the Web page will contain variable-selection
challenge datasets of various levels of difficulty in which the
so-called correct model will not be revealed in advance, but it
will be evident by its residual plot. For instructors who want to
embed their own images or messages in datasets, the Web page
will also contain GAUSS and R programs for implementing all
of the computational aspects of the algorithms described in this
article. However, images usually require some preprocessing as
described in the Appendix.

APPENDIX: COMPUTING, MESSAGE AND IMAGE
PLOT CONSTRUCTION

The author’s Web page contains GAUSS and R programs for
implementing all facets of the dataset construction computa-
tions described in this article starting with a not-necessarily-
orthogonal R0 and Ŷ0. In addition there is a program that will
convert text strings to scatterplots for embedding messages in
residual plots. However, when working with images there are
some nonstatistical computations that are required to convert
an image to a scatterplot. We now summarize the main steps

The American Statistician, May 2007, Vol. 61, No. 2 175



Figure 13. Added-variable plots. Three sets of added-variable plots. Left column, plots of R0 versus T; right column, plots of R0 versus (In − PX∗ )T. Top row,
embedded image example; middle row, quadratic dependence; bottom row, sinusoidal dependence.

needed to take an image and convert it into a scatterplot that can
be embedded into a residual plot.

Starting with a black-and-white image, and a black-and-white
line drawing in particular is easiest, but not necessary. Readily
available image-editing programs generally have the capabilities
of converting any image to black-and-white. However, a simple
conversion often does not result in a useful (for our purposes)
black-and-white image. In order to keep file size reasonable the
objective is to minimize the number of black pixels while main-
taining recognizability of the image. Edge detection, or edge
enhancement tools, also common in image-editing software, are
useful for this purpose. In addition to using software tools, a little
manual editing also might be necessary. An edge detection tool
worked well on the image of Gertrude Cox in Figure 6 (p. 169).
However, the image of Gauss in Figure 5 (p. 169) required much
manual editing, primarily to remove numerous black pixels in
his hat leaving only an outline of the hat. The bottom line is that
a little digital artwork is required to transform an image to an
acceptable black-and-white image.

The next step is to convert the black-and-white image to a col-
lection of abscissa-ordinate pairs. For this conversion we used the
image conversion utility “convert” in the public domain image-

editing software, ImageMagick 6.3.0 to convert an image (e.g.,
jpg, gif, etc.) to a text file. Then one of the GAUSS or R programs
on the author’s Web page reads and parses the image text file and
outputs (x, y) pairs (i.e., a simple two-column dataset) of the
black pixel locations. This output dataset is the nonorthogonal
residuals and predicted values, R0 and Ŷ0, assumed in Section 2.

IMAGE SOURCES

 
The image of Homer Simpson is a modified version of an orig-

inal downloaded from http:// www.mathsci.appstate.edu/∼sjg/
simpsonsmath/ blackboard.html.

The image of the bison is a modified version of an original
downloaded from http:// www.kidsplanet.org/ tt/ elemenlessons/
bison.html.

The image of R. A. Fisher is a modified version of an orig-
inal downloaded from http:// www.csse.monash.edu.au/∼lloyd/
tildeImages/ People/ Fisher.RA/ .

The image of C. F. Gauss is a modified version of an original
downloaded from
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http:// www.maths-rometus.org/ mathematiques/
histoire-des-maths/ mathematicien/ carl-friedrich-gauss.asp

The image of G. Cox is a modified version of an original
downloaded from
http:// www-history.mcs.st-andrews.ac.uk/∼history/
PictDisplay/ Cox.html.

The image of T. Bayes is a modified version of an original
downloaded from
http:// www.lps.uci.edu/∼johnsonk/ CLASSES/ inductivelogic/
inductivelogicmain.html.

The image of three trout is a modified version of an original
downloaded from
http:// www.sherpaguides.com/ tennessee/ great smoky mtns
np/ fisheries.html

The image of the lone trout is a modified version of an original
downloaded from
http:// www.megavision.net/ ornament/ wildlife collection.htm.

The image of the ASA logo is a modified version of an original
downloaded from
http:// www.amstat.org/ about/ index.cfm?fuseaction=main.
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