

Overview

The PowerSync Analyzer may be utilized today to test next generation **High-Powered** PSE's and associated product prototypes. A **High-Powered** PSE refers to a PSE that furnishes up to 30 watts of power delivered on 2 pairs to a PD. Sifos Technologies has incorporated into **PSA Software Release 3.1** capabilities to combine two physical test ports from a PSA test blade to serve as a single high power test port for the following purposes:

- Description PSE Conformance Testing Including 6 New High Power Overload Tests
- □ Active Loading to 1000 mA total load
- Demulation including Class 4
- DC Voltage, Current, and Power Measurements
- Packet Data Transmission Testing under Load
- □ Standardized Waveforms for High Power PSE Ports

With the anticipated release of IEEE 802.3at expected in 2008, first generation High-Power devices and Power Sourcing Equipment (PSE) are currently in active development throughout the networking industry. High power PSE's with capability to deliver well in excess of the 15.4 watt requirement of IEEE 802.3af PSE's are becoming available ahead of the IEEE standard.

IEEE 802.3at will specify a **High-Power** 2-pair solution for the delivery of up to 30 Watts of power to a Powered Device. PSE's will be required to deliver over 36 Watts of continuous DC power to fulfill this requirement. PSE's may range upwards of 39 Watts in continuous output capacity on a single PSE port delivered on either ALT A or ALT B (for a mid-span PSE) transmission pairs. DC currents will exceed 700mA and overload thresholds will approach 850 mA to 900 mA in many cases.

Hardware and Software Requirements

The only additional hardware required to enable **High-Power** PSE testing is a simple RJ-45 splitter available from Sifos as an integrated **Port Combiner** assembly. *Figure 1* depicts a 4-port high power configuration involving test slots 1-4. Figure

2 provides a schematic representation of the test port setup.

PowerSync Analyzer software version 3.1 offers full support of this test configuration. PSA Interactive adds a new **High Power** control to enable High-Power PSE Conformance Tests, active load control up to 1000 mA, PD Class 4 start-up emulation, and dual-port voltage, current, and power measurements. PowerShell adds several new commands to perform similar functions from the command line or from automated test scripts.

Figure 1. PSA Port Combiner Setup

PSE Conformance Testing – High Power PSE's

PSA Software Version 3.1 includes six new PSE Conformance Tests that are applicable to High Power PSE ports. These are:

Test Name	Test Description
pwrup_inrush_2	PSE Inrush Load Compliance test for PSE's with current limiting thresholds (I _{lim}) in the 600mA to 1000 mA band.
pwrup_pwrcap_2	PSE Port Power Capacity test for PSE's with output power capacity in the 20 to 38 Watt band.
pwrup_maxi_2	PSE Short Circuit Load Compliance test for PSE's with current limiting thresholds (I _{lim}) in the 600mA to 1000 mA band.
pwrup_overId_2	PSE Transient Load Response test for PSE's with maximum overload (I _{cut}) at or below 720 mA.
pwrdn_overId_2	PSE Overload Shutdown test for PSE's with overload cutoff currents (I_{cut}) in the range of 400 to 900 mA.
pwrdn_v_2	PSE Error Delay test for PSE's with current limiting thresholds (Ilim) in the 600mA to 1000 mA band.

Like existing PSE Conformance Tests, these tests can be run individually or sequenced automatically from the PSA Interactive GUI and from PowerShell. Each test produces output results and parameters that are exactly analogous to their corresponding 802.3af test counterparts. Each test, where applicable, supports display of voltage and current waveforms collected as part of the parametric analysis during testing (*see Figure 3*).

However, unlike existing 803.3af PSE Conformance Tests, firm test limits for certain parameters such as I_{cut} and I_{lim} do not exist at this time and will not exist until the completion of the IEEE 8802.3at (PoE Plus) standard. Nonetheless, PSE Conformance Testing can be sequenced to the standard Sifos 802.3af Conformance Test Report spreadsheet for limit checking and statistical analysis. Certain parameters outside the normal 802.3af limit boundaries will be flagged as "Info" while other parameters are tested to anticipated 803.3at limits.

Another key difference between the 802.3af tests and their High Power counterparts is the need within the High-Power tests to search for device-specific thresholds for cutoff current (I_{cut}) and overload limiting current (I_{lim})

Figure 3. Ilim Current Trace from pwrup_maxi_2 Test.

thresholds. The tests will typically take longer to execute since these unspecified limit thresholds will vary according to PSE implementation and perhaps across PSE ports that are tested. Since the PSE Conformance Tests make no assumptions regarding these thresholds, the tests are ready to use with proprietary implementations of High-Power PSE's.

All other PSE Conformance Tests will run using the standard 802.3af version and are not affected by the differences between 802.3af compliant PSE's and pre-802.3at high power PSE's.

PSE Conformance Test Reporting

The standard PSE Conformance Test Report spreadsheet for the PowerSync Analyzer will report results from both normal 802.3af and High-Power PSE testing that is sequenced from PSA Interactive or PowerShell. Since several important test limits are not yet available, some parameters such as I_{cut} (Overload Cut-off Current), I_{inrush} (Inrush Overload Current), and I_{lim} (Short Circuit Overload Current) are tested to "best guess" specifications and are flagged either as "Pass" (within limit) or "Info" (out of limit) in the standard spreadsheet report. Other parameters, particularly those associated with timing such as T_{lim} and T_{ovld} will test with identical limits as 802.3af and should presumably meet those limit criteria.

Figure 4 shows a sampling of test results from a 4-port PSE running a full suite of PSE Conformance Tests including the six new high power tests utilizing PSA Port Combiners.

PSA TEST RESULTS				Sifos			802.3af Conformance Report					
September 21 2007					Technologies		25	version 3.1		3.1.20		
Loop Count	15					Sifos P	SE Intero	p Index*:	79%		report ver	sion 3.1
PSE Tested: Prototype High Power P	SE	-										
Chassis ID: 192.168.221.106		PO	RTS						Low	P/F	High	P/F
TestLoop: 1	1-1	2-1	3-1	4-1	UNITS	Min	Max	Average	Limit		Limit	
Test: det_v		51										
Open_Circuit_Det_Voc=	11.6	11.7	11.6	11.7	volts	11.6	11.7	11.65	2.8	Pass	30	Pass
Peak Det Vvalid=	8.9	8.8	8.8	8.83	volts	1 39	4.43	8.8325	3.8	Pass	10	Pass
Det Volt Sten dVtest=	4.42	4.41	4.33	4.41	volts	4.39	4.42	4.4075	2.0	Pass	72	Pass
Detection Slew=	0.0138	0.0134	0.0141	0.0137	V/usec	0.0134	0.0141	0.01375	0	Pass	0.1	Pass
Good_Sig_Det_Pulse=	3	3	5	1	steps	1	5	3	1	Pass	9	Pass
High_Sig_dVtest=	4.47	4.42	4.43	4.49	volts	4.42	4.49	4.4525	1	Pass	8	Pass
High_Sig_MaxV=	8.88	8.82	8.8	8.9	volts	8.8	8.9	8.85	3.8	Pass	11	Pass
Non_802_Step_V=	U	U	U	U	voits	0	u	0	U	Pass	0.1	Pass
Init Current Isc=	0	0	0	0	mA	0	0	0	0	Pass	5	Pass
Det_Current_Isc=	0.63	3.85	4.23	3.59	mA	0.63	4.23	3.075	0	Pass	5	Pass
Test: det_range												
Rgood_Max=	29	30	30	29	Kohm	29	30	29.5	26	Pass	33	Pass
Rgood_Min=	17	17	17	17	Kohm	17	17	17	15	Pass	19	Pass
Cgood_Max=	0.14	0.14	0.14	0.14	uF	0.14	0.14	0.14	U	Hass	10	Mass
Backoff Time Tdbo=	n	n	n	n	msec	0	Ó	D D	-1	Pass	1500	Pass
Eff Backoff Tdbo eff=	122.2	32.1	117.8	29.2	msec	29.2	122.2	75.325	-1	Pass	1500	Pass
Detection Time Tdet=	129.3	146.9	133.2	148.8	msec	129.3	148.8	139.55	5	Pass	500	Pass
Total_Det_Time=	129.3	146.9	133.2	148.8	msec	129.3	148.8	139.55	5	Pass	1000	Pass
Test: det_rsource		0.1			L(O)			0.07			0000	D
Output Impedance Zout=	0.1	0.1	0	0	KÜhm	0	0,1	0.05	45	Info	2000	Pass
Pk Class Voltage Valess	17 9	17 9	17 Q	17 Q	volts	17 0	17.0	17 9	15.5	Pase	20.5	Pase
Test: class time	17.3	1715	16.5	17.5	Tono	17.5		17.5	10.0	1 400	20.0	1 400
Class Time Tpdc=	18.8	18.8	19.5	18.8	msec	18.8	19.5	18.975	10	Pass	75	Pass
Test: pwrup_time												
Pwr-On_Rise_Time_Trise=	303	307	301	330	usec	301	330	310.25	15	Pass	50000	Pass
Power-On_Time_Tpon=	15.6	15.6	15.6	19.5	msec	15.6	19.5	16.575	0	Pass	400	Pass
Test: pwrup_inrush_2	745.0	700 €	707.0	7 AE 7	m A	707.6	7457	727 025	700	Deee	1000	Deee
May Liprush=	601	612.1	621.7	601.5	mA	601	621.7	609.025	720	Pass	810	Pass
Min Iinrush=	596.5	606	606.5	596.5	mA	596.5	606.5	601.375	60	Pass	1020	Pass
Tlim Inrush=	68.6	68.6	68.6	68.6	msec	68.6	68.6	68.6	50	Pass	75	Pass
Inrush_Voltage=	19.8	20.5	20.7	19.8	Volts	19.8	20.7	20.2	10	Pass	57	Pass
Powered_Vport=	47.4	47.3	47.4	47.4	Volts	47.3	47.4	47.375	50	Fail	57	Pass
Test: pwrup_v	17.0		17.0	17.0		17.5		17.575				_
DC_Voltage_Vport=	47.6	47.5	47.6	47.6	volts	47.5	47.6	47.575	50	Fail	57	Pass
Test: nurun noise	.4		4		IIIVOILS	4		4	0	Fass	000	Fass
AC Ripple Vpp(noise)=	8	8	12	8	mVolts	8	12	9	0	Pass	200	Pass
Test: pwrup_pwr		l.										
DC_Power_Pport=	2.4	2.3	2.4	2.4	watts	2.3	2.4	2.375	2.2	Pass	2.9	Pass
DC_Current_Iport=	51	50	50	51	mA	50	51	50.5	49	Pass	51	Pass
Test: pwrup_pwrcap_2	25.7	26.4	25.0	25.7		75.7		75 075	21.5	Info	41	Deee
Port_Capacity=	564	572	564	564	mA	20.7	20.1	20.020	552	Pase	720	Pace
Port Class=	4	4	4	4	None	4	4	4	0	Pass	4	Pass
Test: pwrup maxi 2	-17.6											
Init_Ilim=	644	655	652	643	mA	643	655	648.5	720	Info	1020	Pass
Max_Current_Limit_Ilim=	600	613	622	600	mA	600	622	608.75	720	Info	810	Pass
Min_Current_Limit_Ilim=	597	607	605	596	mA	596	607	601.25	720	Info	810	Pass
Short Cir Timeout Tlim=	68.6 19.7	68.6 20.4	20.7	68.6 19.7	msec Volts	19.5	58.5 20.7	20 125	50 60	Pass	/5 57	Pass
25 msec Short Vport=	47.6	47.6	47.7	47.6	Volts	47.6	47.7	47 625	50	Info	57	Pass
Test: pwrup overld 2								.,			51	
Vport_Min=	46.4	46.1	46.3	45.9	volts	45.9	46.4	46.175	50	Info	57	Pass
Negative_Slew=	0.003	0.003	0.003	0.011	V/uSec	0.003	0.011	0.005	-1	Pass	3.5	Pass
Positive_Slew=	0.002	0.002	0.002	0.002	V/usec	0.002	0.002	0.002	-1	Pass	3.5	Pass
Power_Duration=	3080	3080	3080	3080	uSec	3080	3080	3080	2750	Pass	3250	Pass
Integr Power Out=	83.68	84.48	83.72	83.48	mvv-Sec	83.48	84.48	83.84	108	INTO	124	Mass
Ninimum Valid Imin2=	<u></u> 8	10	8	q	mA	8	10	8 76	5.5	Pass	10	Pass
Min Valid Time Tmps=	30	60	20	20	msec	20	60	32.5	1	Pass	65	Pass
Test: mps_dc_pwrdn												
Max_Invalid_Imin1=	8	9	7	8	mA	7	9	8	5	Pass	9.5	Pass
Time-to-Shutdown_Tmpdo=	357	346	347	350	msec	346	357	350	300	Pass	400	Pass
Max Voltage Vopen max=	0.1	1	0.6	0.6	volts	0.1	1	0.575	-1	Pass	30	Pass
Class 4 Orld Current Jourt-	574	582	574	575	mΑ	574	583	576 25	550	Pase	720	Pase
Overld Time Limit Tovld=	68	68	68	68	mSec	68	68	68	50	Pass	75	Pass
Test: pwrdn time												
Turn-Off Time Toff=	96.1	98.2	96.7	97.1	mSec	96.1	98.2	97.025	0	Pass	500	Pass
Output_Cap_Cout=	0.25673	0.26543	0.25969	0.26222	uF	0.25673	0.26543	0.261018	-1	Pass	0.52	Pass
Output_Load_Rp=	240.1	235.7	238.2	235.8	Kohm	235.7	240.1	237.45	45	Pass	50000	Pass
Test: pwrdn_v_2	0.4	0.4	0.4	0.4	VDC	0.4	0.4	0.4		Page	20	Page
Avg_idle_Voff=	1250	12/12 2	12/2 2	12/12/2	msec	12/2 2	1250	1244.15	750	Page	2.8	Pass
Peak Error Delay Ved=	0.5	0.5	0.6	0.5	VDC	0.5	0.6	0.525	0	Pass	20.5	Pass

Figure 4: High Power PSE Conformance Test Report

PowerSync Analyzer Application Note PSA-1200 PSE High Power Testing

PSA Interactive Conformance Test Menus

With PSA Software version 3.1, the **PSE Tests** Menu under the PSE Conformance group has been modified to include a PSE Power Output option selection. When **High Power** is selected, a message box will appear prompting the user to connect the PSE Port Combiners described above in Figures 1 and 2.

Once **High Power** mode is set, the Slot-Port selection area reduces to just one single test **Port** per **Slot** (or per test blade in the PSA). Additionally, the six new tests required for high power PSE testing are installed in the PSE Test selection area in place of their 802.3af counterpart tests.

In the high power mode, all PSE Conformance Tests run only on Port 1 which now represents both test ports of a single PSA test blade. Any PSE Conformance Test can be run exactly as it is for **Normal AF** mode testing. Just as before, the **Show Traces** check button will cause any signal traces utilized by any of the tests to be displayed during the course of testing.

Figure 5. PSE Tests Menu for PSA Interactive 3.1

Figure 6. PSE Conformance Test Sequencer Menu

The PSE Conformance Test **Sequencer** menu also adds the PSE Power mode selection capability where users choose between **Normal AF** and **High Power**. Just as with the PSE Tests menu, the **High Power** selection will prompt for PSA Port Combiner connections with a message box. It will also disable all **Port** 2 check buttons and only enable selection of **Port 1** on each test **Slot**. The six PSE Conformance Tests that are specific to high power testing are installed in the **Conformance Tests** selection area in place of their 802.3af counterpart tests.

Sequencing PSE Conformance Tests from PowerShell

The PowerShell command **sequence** enables users to sequence PSE Conformance Tests from PowerShell. A new **-hp** argument is added to specify that testing is to be run on a High Power PSE using the Port Combiner configuration. All other arguments associated with sequence are identical to the PSE 3.0 version. In place of the **-hp** argument, a user may specify any of the high power tests in a **-t** argument test list by it's actual name (e.g. **pwrup_inrush_2**). However, the **-hp** argument is always required if the spreadsheet report is to apply modified test limits appropriate to High-Power PSE's.

Command	Command Parameters
sequence	<-v> <loopcount> <-p slot_port_list> <-t testList> <-hp> <-c -f <-n file_name>></loopcount>
	Performs standard conformance test sequencing over designated test list and selected ports with options for reporting to psa_report.xls spreadsheet or to a ascii file as designated by user.
	 v Verbose mode – this is useful for tracking the test steps within each conformance test. <i>loopCount</i> The number of test cycles to execute where one test cycle is all specified tests on all specified ports. Range is 1 to 99. Default is 1.
	-p Sub-command indicating that a user specified list of slot-ports will be provided. Default is ALL available test ports.
	<i>slot_port_list</i> A space delimited TCL list of slot-port identifiers. Example would be {1,1 1,2 2,1 2,2}. Must be in braces if more than one port is specified.
	-t Sub-command indicating that a user specified list of tests will be provided. Default is ALL available tests for the PSE Type (AC MPS or DC MPS).
	<i>testList</i> A space delimited TCL list of test identifiers. Example would be {det_v det_i det_time}. Must be in braces if more than one port is specified.
	-hp Sub-command indicating that testing is to be done on combined PSA test ports for high power PSE's. High Power versions of 6 PSE tests will be substituted in place of the normal 802.3af power versions of those tests. If this argument is provided, the test list will only include Port 1 from each test slot.
	-c Sub-command to route test results to the psa_report.xls spreadsheet.
	-f Sub-command to route test results to an ASCII file where the default file will be a date and time-stamped file name placed in the \Results subdirectory.
	-n Sub-command to specify a file name and path that is different than the default for and ASCII report file
	<i>file_name</i> The absolute path and file name (excluding ".txt" extension) of ASCII formatted report. Use forward slashes in path input.

Each High-Power PSE Conformance Test can be run individually from PowerShell simply by using the associated High-Power test name as a command. An example would be:

pwrup_maxi_2 3,1

This command will run the Short Circuit Overload Compliance test for High-Power PSE's on test slot 3. Port 1 should always be specified with each individual test command.

PSA Interactive and High-Power PSE Testing

PSA Interactive fully supports testing of High-Power PSE's using the PSA Port Combiner configuration. There are 3 menus in PSA Interactive where **High Power** PSE Testing can be globally specified:

- Port Configuration Menu
- □ PSE Conformance "PSE Tests" Menu
- □ PSE Conformance "Sequencer" Menu

The latter two of these menus are described above where radio buttons are added to specify **Normal AF** or **High Power** PSE Testing mode. The Port Configuration menu adds a check button for this same purpose. As with the other two menus, when **High Power PSE** is selected, a dialog box will appear to remind the user that the PSE Port Combiners must be added to each PSA Test Blade. Similarly, the **Port** selection box drops down to a single PSA test port per blade, a feature that will be duplicated in all menus that allow Slot-Port selection.

One other feature of **High Power** PSE mode in PSA Interactive is that the **Copy Settings** sub-menu (Figure 8) will now be limited to Port 1 of each test slot only since PSA Slots (or test blades) are now considered to have only a *single combined test port*.

Figure 7. PSA 31. Port Configuration Menu

PowerSync Analyzer Application Note PSA-1200 PSE High Power Testing

All other features of the **Port Configuration** and **Trigger Configuration** menus remained unchanged and will work with the PSE Test Blade just as if it had a single, High Power PSE test port per blade.

Powe	rSync	Inte	eracti	ve -	Por	t Re	plica	tion					_ 0 ×
						P	SA Po	ort Re	plical	tion			
							1	PSA SI	ot				
	1	2	3	4	5	6	7	8	9	10	11	12	ALL PORTS
Port	1 🗖		Г	Г	Г	Г		П	Г	Г			
Port	2 🗖	Е	Г	Е	Е	П	Е	Г	Е	Г	Е	Γ	
Сору	,	Port	Config	uratio	n								
From	1	Slot	1, Port	1					Сору	Setting	\$		DONE

Figure 8. Port Replication Menu

Slot Port	Trigger 1, Internal	ARM Trigger
	 Rising 	Clear Trigger
2	C Falling	C IT.
	Level 35.00 VDC	Send Frigger
Chassis 192.168.221.108		Trigger Status:
alact Chargin Read Sattings	1	Unknown

Figure 9. PSA 3.1 Trigger Configuration Menu

The PSA Interactive Load Configuration menu in Figure 10 also interacts with each PSA test slot as if it were a single, high power PSE test port. **Static Load Current** and **Transient Level** current can be programmed from 0 to 1022 mA when in the High Power PSE mode. Load transients may only be triggered using **Waveform** or **Event** triggering, however. The

Figure 10. PSA 3.1 Load Configuration Menu

The DC Meters menu is essentially unchanged except that again, only **Port 1** is available for measurements and a **Ports Combined** label indicates that the PSA software is working in the **High Power** PSE mode.

In the Ports Combined mode, all **DC Current** and **DC Power** measurements will interact with the combined PSA test ports and report total current flow. Each flavor of the DC Current Meter, **Average, Max Peak, Min Peak**, and **Trace** are available. All trigger modes are available as well.

DC Current measurements can range to over 1000 mA and **DC Power** measurements to over 40 watts when in the Ports Combined mode.

The **Event Control Panel** also provides an equivalent set of functions useful for managing PSE port state and facilitating trigger events under PSA Interactive. The only feature removed is the **Immediate** Transient Trigger mode, however, as stated above, the **Event Trigger** can serve an equivalent purpose for generating immediate triggers. **Immediate** triggering mode is disabled. **Immediate** triggered load transients are still readily available by using the **Event** Trigger mode and then using the **Event Trigger** button in the Event Control Panel menu or the **Send Trigger** button in the Trigger menu. The progression to create an immediate transient in High Power PSE mode therefore is:

- 1. Configure the Transient, including Event trigger
- 2. Initiate Transient
- 3. Press Send Trigger or Event Trigger buttons

The Class 4 PD Emulation option will create the following load currents during a Class 4 emulated power-up:

- □ Class Current: 40 mA
- □ Inrush Current: 511 mA
- □ Steady State Current: 430 mA

Figure 11. PSA 3.1 DC Meter & Event Control Menus

PowerSync Analyzer Application Note PSA-1200 PSE High Power Testing

The AC Meter and Time Interval meter menus are largely the same for High Power PSE testing with PSA Port Combiners with the only difference being the limitation to a single test port per slot in the PSA.

The Waveforms Menu (Figure 12) fully supports High Power PSE analysis. As with the meter menus, it notes the **Ports Combined** status of PSA Software. It also adds **Class 4** PD Emulation which in turn will affect the **Classification, Power-Up Sequence,** and **Load Response** waveforms as well as the **I**_{cut} scanning range for the **Shutdown Overload** waveform.

Finally, when PSA Interactive is in the **High Power** PSE testing mode, the three Multi-Port menus will not be available since the Multi-Port Test Suite will not work with Port Combiners and High-Power PSE's.

Figure 12. PSA 3.1 Waveform Menu

PowerShell Extensions for High-Power PSE Testing

PowerShell has also been extended to add several commands helpful for those writing test scripts to test High-Power PSE's using the PSA Port Combiners. Added commands are provided in primitive resource control, load and power measurements, and utility level functions as described in the tables below. All commands support the optional <slot,port> argument common to many other PowerShell commands, however the "port" should generally be specified as "1" for each of these commands since PSA test blades are considered to have just one High-Power test port.

Command	Command Parameters
iload_2	<slot,1> <i current=""> <trigout> <stat ?="" =""></stat></trigout></i></slot,1>
	Configures active load entity to a steady state current load. Option provided to generate a
	trigger out on each issuance of this command.
	i specifies current entry
	<i>current</i> is current load in units of mA. Current load has range of 0 to 1022 mA with 0.5 mA
	steps.
	trigout: Generate an event trigger coincident with static load change.
itrans_2	<pre><slot,1> <i1 currentl=""> <t1 durationl=""> <i2 current2=""> <t2 duration2=""> < trig1 ext> trigout</t2></i2></t1></i1></slot,1></pre>
	Configures and launches current transients consisting of 2 sequential steps of current with
	specified durations. Optionally produces trigger out. Returns to "iload" current upon
	completion of transient. There is no memory of trigger mode – must be specified on each
	instance of usage.
	1 : 2. specify sympetry for star 1 and 2 respectively.
	11, 12: specify duration entry for step 1 and 2 respectively.
	11, 12. specify duration entry for step 1 and 2 respectively.
	<i>duration</i> is first duration value (range 1m to 1000m or 2000 to 10000 where "m" is mSec
	and "u" is use)
	current? is second current value in units of mA (0 to 1022 mA)
	<i>duration</i> ² is first duration value (range 1m to 1000m or 2000 to 10000 where "m" is mSec
	and "u" is usec) duration? may also take the value "hold" causing the current load to
	sustain indefinitely at the <i>current</i> ² value.
	trig1 = start current transient on next trig1 event
	ext = start current transient on next ext trigger event
	trigout = generate hardware trigger on command execution

Command	Command Parameters
idcaverage_2	<pre><slot,1> <trig ext="" off="" on="" =""> <period interval=""> <timeout 10="" 100="" =""> <? stat></timeout></period></trig></slot,1></pre>
0 -	Configures and performs an Average DC Current measurement on a PoE Pair up to 1022 mA.
	trig off enables immediate execute of DC measurement when "stat" query is issued.
	trig on specifies that the measurement will be performed when the trigger condition specified
	on Trig1 is achieved. Trig1 will be armed automatically when "stat" query is issued.
	trig ext specifies that the measurement will be performed when the external input trigger is
	asserted.
	period specifies that an averaging period will be defined.
	interval specifies the averaging period as "Nm" where N is 10, 20, 50, 100, 200, 500 mSec or
	"Ns" where N is 1, 2, or 5 seconds. Default value is 100 mSec.
	found within 10 seconds following trigger arm
	timeout 100 specifies that a bardware triggered measurement should time out if no trigger is
	found within 100 seconds following trigger arm
ideneak 2	$\langle slot 1 \rangle \langle trig OFF ON EXT \rangle \langle max min \rangle \langle neriod interval \rangle \langle timeout 10 100 \rangle \langle ? $
http://	stat>
	Configures and performs a Peak DC Current measurement on a PoE Pair up to 1022 mA.
	trig off enables immediate execute of DC measurement when "stat" query is issued.
	trig on specifies that the measurement will be performed when the trigger condition specified
	on Trig1 is achieved. Trig1 will be armed automatically when "stat" query is issued.
	trig ext specifies that the measurement will be performed when the external input trigger is
	asserted.
	period specifies that an averaging period will be defined.
	<i>interval</i> specifies the averaging period as "Nm" where N is 10, 20, 50, 100, 200, 500 mSec or
	"Ns" where N is 1, 2, or 5 seconds. Default value is 100 mSec.
	timeout 10 specifies that a hardware triggered measurement should time out if no trigger is
	found within 10 seconds following trigger arm.
	timeout 100 specifies that a hardware triggered measurement should time out if no trigger is
ideteese 0	found within 100 seconds following trigger arm.
Idetrace_2	<pre><stot,1> <trig ex1="" off="" on="" =""> <period interval=""> <timeout 10="" 100="" =""> <; stat></timeout></period></trig></stot,1></pre>
	Configures and performs a DC Current Trace measurement on a FOE Fair up to 1022 mA.
	trig off enables immediate execute of DC measurement when "stat" query is issued
	trig on specifies that the measurement will be performed when the trigger condition specified
	on Trig1 is achieved. Trig1 will be armed automatically when "stat" query is issued.
	trig ext specifies that the measurement will be performed when the external input trigger is
	asserted.
	period specifies that an averaging period will be defined.
	<i>interval</i> specifies the averaging period as "Nm" where N is 10, 20, 50, 100, 200, 500 mSec or
	"Ns" where N is 1, 2, or 5 seconds. Default value is 100 mSec.
	timeout 10 specifies that a hardware triggered measurement should time out if no trigger is
	found within 10 seconds following trigger arm.
	timeout 100 specifies that a hardware triggered measurement should time out if no trigger is
	found within 100 seconds following trigger arm.
paverage_2	<stot,1> <pre>cyperiod interval> stat</pre></stot,1>
	Performs an immediate average power measurement and returns power in watts. Since this magnument function uses adaptorage 2 and ideatorage 2, there is no memory for the
	configuration and the "2" quary is not supported "stat" must be specified on each execution
	of the command
	-,
	period specifies that a sampling period will be defined.
	<i>interval</i> specifies the sampling period as "Nm" where N is 10, 20, 50, 100, 200, 500 mSec or
	"Ns" where N is 1, 2, or 5 seconds. Default value is 100 mSec.
psa_disconnect_2	<slot,1></slot,1>
	Forces a PSE Port power-down to occur. Opens the port switch, sets DC current load to 0
	mA.

Command	Command Para	ameters									
power_port_2	<pre><slot,1> <dr resistance=""> <dc capacitance=""></dc></dr></slot,1></pre>										
	Simulates a PD connected to a PSE port to bring power up to a user-specified condition. If										
	no command parameters are specified, the default power-up condition is a static load of 20										
	mA. Status of port is returned upon completion of command.										
	p indicates that	p indicates that power draw of port will be specified.									
	<i>power</i> is the pow	ver in watts that the p	port will power-up to. R	egardless of power specified,							
	classification	classification will detect a "Class 0" PD. Range is .2 to 15.4 Watts.									
	i indicates that current draw of port will be specified.										
	<i>current</i> is the current draw in mA that the port will power-up with. Regardless of current										
	specified, classification will detect a "Class 0" PD. Range is 0 to 350 mA.										
	c indicates that classification of port will be specified.										
	<i>class</i> is the port	<i>class</i> is the port classification. Range is 0 to 4. Load currents implemented by classification									
	are:	1	1	7							
	Class	Class Current	Power-Up Current								
	0	2 mA	140 mA								
	1	10 mA	44 mA								
	2	18 mA	108 mA								
	3 28 mA 202 mA										
	4	40 mA	324 mA								
	ci indicates that	the classification cur	rent to be applied will be	specified.							
	class_current is	the classification cur	rent to apply during clas	sification. Range is 0 to 45 mA.							
	Power-up currer	nt will be determined	according the class-bar	nd of the specified							
	classification cu	irrent.									
	dr indicates that	a non-default detect	ion resistance should be	used.							
	<i>resistance</i> is the	detection load resist	ance to use for the power	-up. Range is 11 to $39K\Omega$.							
	dc indicates that	a non-default detect	ion capacitance should b	e used.							
	<i>capacitance</i> is th	he detection load resi	stance to use for the pow	er-up. Range is $0, 5, 7, \text{ or } 9 \mu\text{F}$.							
replicate_ports_2	<pre><slot,i> config</slot,i></pre>	_type {target_slots}	<u> </u>								
	Replicate config	uration of resources	from one test slot to a nu	imber of other test slots for							
	High-Power PSI	E testing with PSA Po	ort Combiners.								
	agufia tuna Th	turna of configuratio	on to be replicated from	(north to (target north)							
	Ontions are: nor	t trig load ydaa y	udan vdat idan idan i	$dat \mid aay \mid time \mid all "all" will$							
	fully replicate al	t uig ioau vuca v	rations								
	target slots. A	list of all slots to whi	ch the configuration is to	be conjed. Each slot is in the							
	form as "slot# 1	" and is snace delim	ited in the list	be copied. Each slot is in the							
	101111 as 310177, 1	and is space definit	neu in the list.								

Test Configuration

Figure 13: PSA with Port Combiners for High-Power PSE Testing.

For more information on the Sifos Technologies' Power over Ethernet test & measurement solutions look us up at: www.sifos.com

Sifos Technologies, Inc. 1061 East Street Tewksbury, MA 01876 <u>sales@sifos.com</u>

Publication # TBD