
NCT-100 Programming Multicore Processors
3 day intensive training course covering all aspects of programming multicore processors
using advanced methods and techniques

Course Overview	 Benefits

This course covers concepts and approaches relat-
ed to programming multicore processors in C/C++.
From recognizing parallelism opportunities, to
multithreaded programming and designing multi-
threaded algorithms, this course teaches you how
to deal with the many aspects of synchronization,
multithreading libraries, processor caches, shared
memory and specialized methods for multithreaded
programming using modern approaches such as
OpenMP and Intel Threading Building Blocks.

Course Objectives
•	 In-depth theoretical background covering multicore 	
	 processor architecture, concurrent programming, 	
	 parallel programming concepts and considerations.
•	 Critical concepts such as implicit and explicit parallelism,
	 atomicity, synchronization, shared memory, cache 	
	 coherency, Ahmdal's Law, Flynn's processor 		
	 classifications and Little's law are covered in-depth.
•	Recognize the best parallelism opportunities and explain 	
	 the advantages of using threads to obtain concurrency 	
	 using various analysis techniques, compositional 		
	 approaches and parallel design patterns.
•	How to avoid synchronization pitfalls such as starvation, 	
	 deadlock, live lock and data races.
•	How to implement and tune parallel algorithms.
•	Define and use different synchronization methods 	
	 effectively including mutexes/critical sections and 	
	 conditional variables.
•	Explain operating system interactions and the relationship
	 between shared memory and threads.
•	Explain what aspects of the operating system affect 	
	 programming, how to deal with shared memory
 	 effectively, CPU selection, CPU-specific binding of 	
	 threads, thread specific data and kernel-level scheduling.
•	Understand and use threads with specific technologies 	
	 and programming methods such as the Windows API, 	
	 POSIX pthreads, Intel TBB and OpenMP using C/C++ and 	
	 the Intel Compiler.

Who should attend

• A comprehensive training workshop: This course offers an 	
	 in-depth overview of fundamental concepts while offering
	 advanced training and practical advice on C/C++ programming 	
	 of multicore processors using modern methods.
•	Gain critical insights on how to improve your software's 		
	 performance: This course is designed to give you key skills 	
	 and using specialized tools to help you to correctly 		
	 architect, design and develop efficient parallel applications 	
	 for multicore processors.
• Additional hands-on learning: This course provides laboratory 	
	 sessions in writing and debugging multithreaded programs 	
	 and excercises on practical parallelization of legacy 		
	 software. It also includes walk-through laboratory exercises 	
	 designed to increase your understanding of multithreading.

•	Hands on experience with the Intel Compiler to build and 		
	 run multithreaded programs during the hands-on learning 	
	 laboratories and case studies.
•	Best practices to deal with MT-unsafe libraries and how to
	 write new thread-safe libraries.

Software architects, software developers, software team
leaders and managers seeking to understand and implement
efficient software running multicore processors. Knowledge
of the C++ programming language and C++ software develop-
ment experience is a pre-requisite for this course.

About nCore

nCore Design,LLC develops high performance software for
multicore processors and embedded systems. Currently
focusing on concurrent software for mobile technologies,
IPTV set-top box operating systems, high performance video
storage file systems, online gaming engines, and transac-
tion execution engine systems. nCore has experience on a
wide variety of Unix platforms and specialized knowledge of
applied optimization techniques using advanced compilers.
nCore is based in Japan and works with local partners to
bring advanced solutions to Japanese and multinational tech-
nology companies.

nCore Design LLC
1-19-501 Keyakidaira
Miyamae, Kawasaki
Kanagawa 216-0023 Japan

Phone:+81-44-982-2399
info@ncoredesign.com
www.ncoredesign.com

nCore Design may make changes to specifications and product descriptions at any time, without notice.
All trademarks and copyrights are the property of the respective owners.
Copyright (C) 2008-2009 nCore Design LLC.

Schedule - Day One

Schedule - Day Two

Schedule - Day Three

• Introduction
• Motivation — The march to multicore
• Architecture — parallelism, processors, shared memory, 		
	 Little’s law, Flynn’s classification
• Concurrent programming — synchronization, atomicity, 		
	 dead locks and data races
• Parallel programming concepts — shared and distributed 		
	 memory, STM, performance — scalability & granularity 		
	 vs. performance, Amdhal, examples
• Programming considerations — parallel analysis,
	 decomposition, guidelines, re-engineering

• Multithreading APIs (Windows/POSIX/TBB) —
	 Creation and destruction
• Exercise: Creation of N threads
• Synchronization — API comparison and C++
• Exercise: Synchronization using a mutex
• Exercise: Synchronization using a conditional variable
• Case Studies — Dead lock and starvation
• Private thread data

• Reader Writer — description and implementation
• Exercise: Implementation and test
• Application: multi-thread efficient memory allocator
• Pipeline — description and implementation
• Exercise: Implementation and test

• Multicore computers — architecture, SMT, memory, caches
• Multicore computers — programming, affinity, process
	 migration, kernel scheduler
• Shared memory programming in C++
	 — Issues
	 — Solutions
	 — Tools
• Introduction to OpenMP
• Exercise: Parallelization of an application using OpenMP

• Thread unsafe APIs
	 — STL
	 — Thread safe wrappers
	 — Exercise: Asynchronous queue
• Exercise: Producer consumer
• Exercise: Parallelization of an independent application
	 using N threads
• Comparison with OpenMP version

• Thread pool
	 — Exercise: implementation and test
• Lock free algorithms
	 — Exercise: implement a producer
	 — Consumer using the previous asynchronous queue and
		 a provided lock
	 — Free queue
• Multicore performance
• Case study — program with shared data
• Relevant Tools
• 	Profilers, debuggers, Intel thread checker

Part One	 Part Two

Part One	 Part Two

Part One	 Part Two

nCore Design LLC
1-19-501 Keyakidaira
Miyamae, Kawasaki
Kanagawa 216-0023 Japan

Phone:+81-44-982-2399
info@ncoredesign.com
www.ncoredesign.com

nCore Design may make changes to specifications and product descriptions at any time, without notice.
All trademarks and copyrights are the property of the respective owners.
Copyright (C) 2008-2009 nCore Design LLC.

Course Registration

Registration Methods

Online: http://www.ncoredesign.com/training/
By E-mail: training@ncoredesign.com
By Fax: +81-3-4496-4620

North American Training Partner

http://www.ncoredesign.com/training/
http://www.exitcertified.com

http://www.ncoredesign.com/training/
mailto:training%40ncoredesign.com?subject=North%20American%20Training%20Courses
http://www.ncoredesign.com/training/
http://www.exitcertified.com

