

Model Driven Engineering Tool

Since the beginning of mankind
great innovations have come from
dreams. These dreams have first
been illustrated with sometimes
a high level of details such as the
planes drawn by Leonardo da Vinci.
This was basically a model of a plane
that was implemented 400 years
later, and that illustrates why we
consider Model Driven Engineering
to be a very natural approach for a
development process.

A good model is abstract enough so
that creativity is not slowed down by
excessive details but precise enough
so that it can be discussed and veri-
fied. This also illustrates there can be
several levels of modeling: very infor-
mal to express an idea or a concept,
semi-formal to make a link from the
idea to the implementation, and for-
mal to allow full verification before
implementation.

No matter how familiar you are with
model driven development, Real
Time Developer Studio will help with
all approaches from a beginner with
informal models, through intermediate
with semi-formal models, and on to
advanced expert with fully formal
models.

Object orientation is not a universal
solution for all types of development,
which is why Real Time Developer
Studio supports a functional approach
as well as an object oriented
approach.

Real Time Developer Studio is based
on recognized international standards
and combines them to provide
a consistent and flawless solution
dedicated to real time and embedded
systems.

Requirements is the starting point of any project and is very often
neglected because it is not formally expressed. Model driven
development introduces high level diagrams such as Use cases
and Sequence diagrams to help formalize the requirements written
in natural language. These diagrams can be later re-used in the
development process in order to check conformance to the requi-
rements.

Because the needs are very likely to evolve
during the development process, it is important
to be able to track the impact of any modification
to the requirements. Real Time Developer
Studio offers a bridge with traceability tools to
handle requirements management.

Easy to use graphical editors with contextual help and syntax veri-
fication help to build up a consistent system. An internal dictionary
of already defined elements allows faster editing. A transition and a
partition browser help to quickly navigate easily through the model.
All diagrams are stored in separate XML files.
The tool includes a graphical
diff and an automatic merge
utility to be integrated with
configuration management
tools.

Editors are common to all
types of modelling: informal,
semi-formal, and formal.
The different diagrams allow
developers to work on an
object oriented or functional
approach.

Use cases describe
the actors involved

Build a scenario roadmap

Further detail the scenarios

Object orientation view

Functional view Advanced behaviour description

Requirements

Edition

Formal and semi-formal models can be simulated to
verify them. Semi-formal models simulation will use
code generation to be executed on the host platform,
and formal models will use the built-in simulation kernel.
Semi-formal simulation is based on the selected target
simulator semantic that can be a RTOS simulator or a
processor simulator (ISS). Formal simulation offers full
control over the execution of the system from discrete
time execution to real time execution, changing states,
changing variable values, generating signals, deleting
signals and so on...

Model debugger

PragmaDev’s Real Time Developer Studio offers several ways to validate a system:
• Against the requirements

Because Real Time Developer Studio supports diagrams to express requirements, it is possible
to validate conformance to the requirements.

Compare model traces
to check conformance
and non-regression

Make sure all
possible situations

have been considered
with the coverage

viewer.

Step in the model

Simulation

Validation

Model tracer

Design a prototyping GUI

Static rules are verified in all
possible scenarios

Dynamic rules are verified in
all possible scenarios

It will automatically
connect to the model

• Against unexpected scenarios
Real Time Developer Studio integrates
exhaustive simulation and verification of
formal models based on open recognized third
party technologies. Observers describe static
and dynamic rules to be verified in the system
in all possible situations. Whenever a rule is
considered violated or verified -depending on
the rule objective- a graphical scenario can be
generated for further analysis.

• With a prototype
Real Time Developer Studio has a built-in proto-
typing GUI design tool in order to easily interact
with the model. Executing the model with an end-
user interface looking like the real system enables
developers to verify that the model behaves as
expected by your customer.

No matter how formal is the model, code can be generated.
Code generation process can be customized to fit the target
development environment. Integrations with the most popular
operating systems is provided in the standard distribution.
Graphical debugging at model level on host and target is also
possible with the built-in debugger and cross-debugger inte-
grations. Last but not least graphical traces are possible in
debug mode as well as in release mode.

Debug the generated code

Debug on target in the modelCode generation and debug

Latest release of RTDS introduces support
of a standard testing language. Models can be
simulated against test suites.

Traces and breakpoints can be set within the
model or within the test suites and stepping is
available on both sides because the bug might
be in the model or in the test suite.

Full testing of the model

Full documentation of the model can be generated automati-
cally from the tool to RTF, Open Document, HTML, or SGML
formats. Full or selected parts of the diagrams are automati-
cally generated with their associated comments including
index and table of contents entries.

The generated styles are customisable so that the generated
document conforms to your corporate layout.

Organize the documentation structure.

Should you need a specific feature, PragmaDev can provide tool
customisation to perfectly fit your development environment. The
newly introduced features will be incorporated into the standard
product so that they are maintained in future releases. Because
customisation to add a feature or modify the way that the standard
tool operates is often quick and inexpensive, it must be seriously
considered as the productivity improvement can save a lot of time
over the course of a project.

Customize and adapt to your environment.

Documentation
generated
automatically.

P A SS

F A I L E D✓

Customisation

Documentation

Test

PragmaDev
18, rue des Tournelles

75004 Paris France
Tel : +33 1 42 74 15 38

Fax : +33 1 42 74 15 58
www.pragmadev.com

C
on

ce
p

tio
n

:
gl

g
•

p
ho

to
s

:
E

p
ic

tu
ra

©
Ta

tia
na

K
al

as
hn

ik
ov

a
/

S
te

p
he

n
S

tr
at

hd
ee

Openness
Real Time Developer Studio is an open tool on several aspects:
• It can import and export the models in several formats.
• Each element of the project is stored as an XML file.
• RTDS features can be called from a command line.
• RTDS features can be called from a CORBA broker.

Licensing and supported platforms
• Real Time Developer Studio runs on Windows, Solaris, and Linux platforms.
• Real Time Developer Studio uses floating licenses that can be used anywhere

on a local area network.
• Generated code and templates are delivered as source code with no royalties.

Technologies
• ASN.1: Abstract Syntax Notation One is standardized by International

Telecommunication Union under reference X.680.
• IF: Intermediate Format is defined by Verimag Labs.
• MDA: Model Driven Architecture is standardized by Object Management Group.
• SDL: Specification and Description Language is standardized by International

Telecommunication Union under reference Z.100.
• SDL-RT: Specification and Description Language Real Time combines UML,

SDL and C/C++ languages within one consistent model.
• UML: Unified Modeling Language is standardized by Object Management Group.
• TTCN-3: Testing and Test Control Notation is standardized by the International

Telecommunication Union under reference Z.140.

