
Nagarro White Paper Series

1 Copyright (c) Nagarro Inc - all rights reserved.
Please do not make copies or distribute without explicit permission.

Our client is a leading test preparation institute targeting the multi-billion Due to vastly varying performance requirements and changing business

dollar training and test preparation market. Their training and test prep needs, a traditional approach to provisioning and managing IT infrastruc-

courses prepare students for the extremely competitive landscape of ture would have ended up in us vastly over-provisioning hardware

admissions into the top educational institutions worldwide. Traditionally, resources. We realized that we needed an elastic, utility computation

the client has used classroom based training curriculums for their model which could be dynamically scaled up or down to meet changing

courses, but recently decided to start a web-based offering to address the business realities.

growing market for online test preparation. They planned to supplement
In this document we discuss how Nagarro leveraged Amazon's Elastic

the classroom based teaching by delivering their test preparation tools
Compute Cloud to deploy the clients web application, which could be

and training through a web and smart-client based application which
dynamically scaled up within a matter of minutes and not days, weeks or

would allow them to reach a much larger number of students.
months, to support a sudden (anticipated or unanticipated) increase in

Nagarro was contracted to build, host and maintain their online training user community. The solution significantly reduces infrastructure cost by

and test preparation tools, and to establish overall technology strategies removing unused nodes (and hence the associated cost) by paying for

for their online presence. Nagarro built the initial online training and test computation only when required, while at the same time increasing

preparation system with state-of-the-art test taking and reporting application scalability, availability and security.

capabilities, and a student website containing collaborative features like
Section 2 of this document discusses the problem in greater detail

blogs and forums. Very soon, we realized that the load on this kind of a
followed by a discussion of possible solutions in section 3. Section 4

web application would vary greatly over time. Just like news organiza-
introduces EC2. Section 5 has a short description of what the application

tions have to worry about handling heavy loads in case of a big event, the
looked like before it was moved to EC2. Section 6 discusses different

number of concurrent users logged on to the website goes up by an order
configuration and technology details which enabled implementation. This

of magnitude near an examination or just after the results of one of the
section has snippets of different configuration files used for the Apache

exams are announced. Because of the nature of the service provided, it is
HTTP server and Tomcat servers. Section 7 discusses the final process

especially important for the web application to stay responsive at these
view of the web application after it was deployed on EC2. Section 8

times of very heavy load. Users (students) log on to the application at this
discusses known limitations of our approach and suggests a few

time because they really need to!
alternative approaches.

Since this was the first online experience for our client, even the typical

load and average number of expected users was not known. Additionally,

our client planned to extend its online training and test preparation

system by bringing in content from their partners, which would bring in In the process of enabling the web presence of it’s client through their
their own training and test preparation content and content consumers consumer facing website, Nagarro identified following areas of
(their students). These partnerships, while being good for business concern:
translated into tight deadlines for engineers, specially for IT and

Uneven load:infrastructure engineers who had to quickly scale up (and down if

possible) the IT infrastructure to meet changing business needs.
The load on a website such as this can vary greatly over time - it can

1. The problem

Introduction

Cloud Computing Deployment of a Web Application Requiring

 Dynamic Infrastructure Scaling - A Case Study

Cloud Computing Deployment of a Web Application Requiring Dynamic Infrastructure Scaling - A Case Study

Nagarro White Paper Series

2 Copyright (c) Nagarro Inc - all rights reserved.
Please do not make copies or distribute without explicit permission.

increase by an order of magnitude just before an important exam What we really needed was to be able to buy computing resources

or just after the results of an exam are announced. Hence, the in the amount we needed and for the time we needed. We needed

infrastructure needed to support sufficient computing power to a utility computing service with "pay as you go" and "pay for what

handle the peak load. A traditional approach would have resulted you use" approach to computing.

in over-provisioning of hardware to meet peak demands;
Amazon, through its EC2 (Elastic Compute Cloud) offering, has

hardware which would have remained under-utilized most of the
brought together utility computing, computing in the cloud and

time. This over-provisioning would have resulted in increased
virtualization to the masses. Amazon provides storage, raw

equipment, energy, maintenance and management costs.
computing, bandwidth and a programmatic way to control the

Emergent business: provisioning of computing resources. The computing resources

are virtual servers1 that you start (instantiate) using EC2
Since this was the first online undertaking by this company, even

command line tools. Amazon charges by the hour for the use of its
the typical load and average number of users was not known.

computing resources. So the meter stops running when you
More importantly, it was difficult to predict the load a few days

terminate a running Amazon machine2.If designed properly, it is
after a major advertisement campaign was launched, or a few

relatively easy to implement horizontal scalability using cloud
months into the future as our client entered into partnership with

computing capabilities provided by Amazon EC2.
other content providers to start serving their user-base. We

Amazon's S3 which stands for Simple Storage System provides needed to be able to setup an infrastructure which could quickly

storage in the cloud - essentially an infinite storage for objects of respond to changing business needs.

variable size. Amazon EC2 instances images are stored on S3. S3
Management of IT infrastructure:

is also the storage of choice for backing up data on the non-

persistent file-systems associated with the instances3. Managing hardware infrastructure involves managing servers,

routers, switches, power supplies, cooling - pretty much
Using EC2 along with S3 could allow us to separate infrastructure

everything. We needed the ability to quickly scale up our hardware
maintenance duties from application development and give us the

as business grew and as our client created partnerships with other
ability to extend assets to handle peak loads, within minutes,

content providers. This involved buying servers, staffing more IT
without having to purchase hardware for infrequent, very high

engineers to manage the infrastructure and many other activities
loads.

not directly aligned to the core business of the organization.

Moreover, buying hardware works for scaling up but it is not so

easy to get rid of excess hardware capacity. While there are partial

solutions, we needed to be able to buy just the right amount of
Note: This section describes EC2 at the time of completion of the

hardware for the right amount of time and not have to pay for
project. With the advances in virtualization technologies, and

capacity that we did not need.
increase in competition, the features and offerings may change

significantly over time.Maintaining production like large environments:

Amazon describes its Elastic Compute Cloud (EC2) as a web There was an additional problem of maintaining large hardware
service that provides re-sizable compute capacity in the cloud. It infrastructure for simulating heavy loads. While most of the testing
is designed to make web-scale computing easier for did not need to support very large number of concurrent users
developers.What this means is if you need a server up and (typically a few testers manually tested the application), we did
running, you can provision a new server by simply executing a few need to be able to simulate heavy load conditions. This implied
EC2 commands instead of contacting you IT department which in that we needed to have extra servers available only for testing
turn will go looking for hardware and then provision it. If your IT heavy loads. Again, the problem was of over-provisioning and
department needs to order the hardware, it could take hours (if not since the client was not a software development company, they
days or weeks) to get that new server. And if your need is did not have any other use for the unused infrastructure.
transient, you will need to figure out what to do with the hardware

afterwards when it’s not needed anymore. This model of

managing computing infrastructure is especially troublesome for

smaller companies with systems deployed in production which One of the options was to have redundant hardware nodes (web

need to quickly respond to changing business needs. servers, database servers, routers) and application instances to

support the large peak loads experienced by the application for
Amazon EC2 was a good choice for hosting the application for

very short times. Provisioning dedicated hardware to serve peak
following reasons: loads meant a large amount of the computing capacity would have

stayed underutilized for most of the time. We could have started Dynamic scalability:
deploying our own virtual servers to better utilize the idle

computing resources but setting up a virtual data center comes This is the "elastic" aspect of EC2. Using just a few com-

with its own challenges and is not aligned with our core business. mands, you can add (or remove) virtual hardware nodes in

3. Amazon Elastic Compute Cloud (EC2)

2. Possible solutions

Cloud Computing Deployment of a Web Application Requiring Dynamic Infrastructure Scaling - A Case Study

Nagarro White Paper Series

3 Copyright (c) Nagarro Inc - all rights reserved.
Please do not make copies or distribute without explicit permission.

matter of minutes. These nodes are typically pre-configured MySQL for persistent storage. It uses the Apache HTTP server for

images that have your application software installed. The cost of serving static content as well as content from Tomcat (with which

storing these images on S3 is small, so you can store several it communicates using mod_jk.

images, each one specialized to perform a specific function.

Pay-as-you-go:

You only pay for running virtual servers. Since provisioning is

easy and dynamic, you can provision extra virtual servers only

when needed and shut them down when not needed, hence

paying only for the computing that you used.

Track record:

Amazon is a trusted name in the IT and computing world with a

proven track record and EC2 beta was already used by many

companies which have published case studies, white papers and

success stories showcasing their use of Amazon EC2. Figure 1: Process view of the application before moving to EC2

Secure:

Amazon EC2 virtual nodes can belong to separate security groups

The critical part of the system was a JEE web application with each with its own security settings completely isolated from the

MySQL database in the backend. After running performance other. At the same time, EC2 provides fine grained control to relax

tests, looking at historical data and analyzing the results, we security settings between groups. This means that even for the

realized that the MySQL database did not have any problem same application, we could have different security settings for our

handling even the highest loads that were expected for this database servers, web servers and middleware servers.

application. It was the JEE web application running on Tomcat Additionally, EC2 uses virtualization which has it own benefits

which generated complicated processor and memory intensive such as hardware independence and easy support for multiple

reports that needed to be scaled up to support the peak loads. This operating system configurations.

web application also served our client's .NET based desktop
Once the decision was made to move our application to Amazon client. Hence we needed to be able to scale up (and down) the JEE
EC2, we came up with the following list of requirements application server nodes on demand and distribute the load

between servers. Scalability:

We decided to use multiple Tomcat servers running on different We wanted to be able to scale up or down by dynamically
nodes each connected to a single Apache HTTP server through provisioning EC2 virtual nodes.
the mod_jk plugin. We used mod_jk for both load balancing and

Load balancing: failover.

We wanted to be able to share the load between multiple virtual We used MySQL master-slave replication for failover as well as for

nodes. ensuring that we do not loose user sessions in case of an EC2

node failure (it is very rare, we have never experienced it).
Failover:

Multiple Tomcat servers shared session by storing them in the
We wanted to be able to gracefully handle shutting down of one or

MySQL database using the same master-slave setup which was
more virtual nodes. This shutdown could be a result of planned

used for the application data persistence.
scaling down (because of low load) or could be the result of a

service crash. We wanted to make sure that in the event of a Storing session in the database allowed other Tomcat servers to

shutdown or crash, all user sessions were transparently moved to pick up and handle sessions of a crashed Tomcat instance.
the remaining servers.

mod_jk is an Apache plugin which handles communication

between an Apache HTTP server and Tomcat server. In addition
Before we discuss our solution, it will be useful to discuss the web to handling http requests, mod_jk supports load balancing
application in question. Without going into details, we would like to between multiple tomcat servers, failover and sticky sessions.
focus on the aspects important for this discussion. For most parts, Sticky sessions are used to ensure that once a client is connected
this is your typical JEE web application - it has a Struts and Spring to a particular backend Tomcat server, all subsequent requests
based web application which uses Hibernate for data access and

5. Scaling JEE application servers on EC2

4. About the web application
mod_jk - The apache plugin for tomcat

Cloud Computing Deployment of a Web Application Requiring Dynamic Infrastructure Scaling - A Case Study

My SQL Database

My SQL JDBC

JEE application on Tomcat

mod_jk

Apache HTTPD

Nagarro White Paper Series

4 Copyright (c) Nagarro Inc - all rights reserved.
Please do not make copies or distribute without explicit permission.

from that client are sent to the same Tomcat server. In case the servers (also referred to as workers at some places), one running

original Tomcat server becomes unavailable, mod_jk starts on host 100p.prod01.nagarro.net and the other running on host

sending requests to one of the servers still responding. A 100p.prod02.nagarro.net. There is a third worker configured as a

simplified worker.properties file used to configure two Tomcat load balancer (see line number 28). In this scenario, both Tomcat

server instances for load balancing, failover and sticky sessions is workers will share the load equally (see line numbers 14 and 24).

shown below4: Property "sticky_session" on line number 30 is set to 1 which tells

mod_jk load balancer worker that once a user session is
 1 # This is the list of workers. There are

associated with a particular backend Tomcat server, all subse-

quent requests from that user should be directed to that same 2 # 3 workers defined here, the first two are
Tomcat server5.

 3 # regular workers, the third is the load
Adding a Tomcat server node to scale up the JEE application

 4 # balancer which uses the other two. serving capability is pretty simple - launch the appropriate

Amazon machine instance, add a worker to the list of workers,
 5 # -----------------------------

configure other worker properties like the load factor, tell the load

 6 worker.list=100p_w1, 100p_w2, 100p_lb balancer worker about the new worker and then tell Apache to

reload the configuration changes.
 7 # -----------------------------

Additionally, if one of the Tomcat servers were to crash, the load
 8 # First worker, pointing to tomcat installed

balancer would automatically start sending requests to one of the

available Tomcat servers and since the session is replicated using 9 # on 100p.prod01.nagarro.net
the MySQL database, this migration is transparent to the end

10 # ----------------------------- users. For more information on these configurations, refer to the

mod_jk documentation.
11 worker.100p_w1.port=8009

12 worker.100p_w1.host=100p.prod01.nagarro.net

MySQL replication enables statements and data from a (master)
13 worker.100p_w1.type=ajp13

MySQL server to be replicated to one or more MySQL (slave)

14 # Load balance factor servers. This is often referred to as master-slave replication or

simply as replication. Few important characteristics of MySQL
15 worker.100p_w1.lbfactor=1

replication are -

16 # -----------------------------
• Data and statement replication is performed asynchronously.

17 # Second worker, pointing to tomcat installed
• Typical master-slave setups allow data to be written only to the

18 # on 100p.prod02.nagarro.net master node.

19 # -----------------------------
• There is usually a small delay associated with replication. This

means that if the master node crashed, you could lose a small 20 worker.100p_w2.port=8009
amount of data. For typical master-slave replication where

21 worker.100p_w2.host=100p.prod02.nagarro.net slaves are connected to the master over a high speed

(100Mbps or faster) network, the delays are of the order of few 22 worker.100p_w2.type=ajp13
milliseconds to a couple of minutes.

23 # Load balance factor
We used MySQL master-slave replication for failover. The MySQL

24 worker.100p_w2.lbfactor=1 JDBC driver has built-in support for failover. We configured the

data source in all Tomcat instances to use the failover property of
25 # -----------------------------

the MySQL JDBC driver's along with instructions to use the

failover node for writes as well as reads.6. 26 # Load balancer

In the event of a MySQL master node failure, the MySQL JDBC 27 # -----------------------------
driver starts using the slave for all reads and writes and another

28 worker.100p_lb.type=lb MySQL slave is launched which starts using the original slave as

master, 29 worker.100p_lb.balanced_workers=100p_w1, 100p_w2

30 worker.100p_lb.sticky_session=1

In the listing shown above, mod_jk is configured with two Tomcat

MySQL replication and failover

in effect promoting the original slave to master node. For more

detail on these configurations, see the relevant MySQL server and

MySQL JDBC driver manuals.

Cloud Computing Deployment of a Web Application Requiring Dynamic Infrastructure Scaling - A Case Study

Nagarro White Paper Series

5 Copyright (c) Nagarro Inc - all rights reserved.
Please do not make copies or distribute without explicit permission.

Configuring Tomcat for failover

6. Other supporting components, setups

and configurations

support the deployment on EC2. Some of those are discussed

below:

Configuring Tomcat for failover and load balancing was rather
Server and service monitoring using NAGIOS:

straight forward. We first configured a datasource to work with

MySQL failover. This ensured that Tomcat automatically started We used NAGIOS for monitoring servers, services and resources.
using the slave database for all reads and writes in case of a NAGIOS is an open source host and service monitoring tool with
master failure. We then separately configured the server to use ability to send out alerts based on pre-set configuration and
JDBC and one of the tables in the MySQL database for stroing the thresholds. This included monitoring parameters like number of
session data. A typical configuration section which allows Tomcat users logged on to each web application node, status of master-
to use a database for session persistence is show below: slave replication, hard disk and memory usage on each server.

NAGIOS can warn us of an impending node failure (or of a
 1 <Manager

significant load increase) well in advance and if needed,

additional virtual servers can be provisioned to share the load and 2 className="org.apache.catalina.session.Persistent

avoid a service outage. Manager"

Source code control repository mirroring: 3 saveOnRestart="true" maxActiveSessions="-1"

minIdleSwap="2"
We created a subversion read only mirror on an EC2 instance for

creating builds on EC2. This mirror used a secure tunnel to 4 maxIdleSwap="2" maxIdleBackup="2">

synchronize itself from the main repository located inside our
 5 <Store className="org.apache.catalina.session.

network. This was used for automated upgrades and patch
JDBCStore"

installation.

 6 connectionURL=
Off-site replication of MySQL database:

 7 "jdbc:mysql://100p.prod.mysql.01.nagarro.net,100p.
We used secure connections for off-site (out of EC2) replication of

the master and slave databases. This was done using both MySQL 8 prod.mysql.02.nagarro.net/100P_prod?
master-slave replication as well as rsync.

 9 user=XXX&password=XXXXXX&failOverRead
Backing up MySQL database on S3:

 Only=false"
We save MySQL database dumps on a daily basis both on an EC2

10 driverName="com.mysql.jdbc.Driver" server node as well as in S3. We keep weekly backups in S3 going

back 53 weeks (about a year), daily backups going back 30 days
11 sessionDataCol="session_data sessionIdCol="session_id"

and hourly backups going back several hours.

12 sessionLastAccessedCol="last_access"
Set of base server images:

13 sessionMaxInactiveCol="max_inactive"
We have a set of base server images with intelligence to morph

into a required target server. One of the several base server 14 sessionTable="tomcat_sessions"

images is selected based on requirements and then asked to
15 sessionValidCol="valid_session" morph into one of the supported target server types by down-

loading contents from S3 to populate its filesystem and by 16 sessionAppCol="app_name">
communicating with other nodes. This is important for supporting

17 </Store> quick and automated scaling up by provisioning extra servers as

well for handling failovers by quickly starting a new node to
18 </Manager>

replace a failed one. These server images also have intelligence

to persist their image and the contents of their filesystem to S3. Notice that the configuration snippet listed above directly

This is useful for shutting down (terminating) an instance when specifies the JDBC connection URL (including the failover

not needed and later starting the instance. information) and does not use the data source used by the JEE

application.

In addition to the tools and techniques discussed earlier, there

were several other components, tools and techniques used to

Using Apache to serve static content:

Since Apache can serve static content much faster than Tomcat

and Tomcat servers were the ones running CPU and memory

intensive jobs, we moved all static content to Apache and served it

in compressed form. This also decreased the content size and

improved the client response.

Cloud Computing Deployment of a Web Application Requiring Dynamic Infrastructure Scaling - A Case Study

Nagarro White Paper Series

6 Copyright (c) Nagarro Inc - all rights reserved.
Please do not make copies or distribute without explicit permission.

7. Deploying the web application on EC2 8. Conclusion

The final web application deployment is shown in figure 2. As you From a programming point of view, following JEE specifications,

can see, this process view is significantly different from the guidelines and best practices ensured seamless move to a

original process view but it is the result of the introduction of scalable deployment with failover support requiring only few

several very important architectural qualities and infrastructural configuration changes and no code changes at all.

capabilities into the system. An interesting point to note is that
It is important to point out that the current deployment is not

while almost all of these architectural qualities and infrastructural
infinitely scalable. At a certain point, the approach of saving

capabilities would have been introduced into the system
sessions in the database for persistence and sharing across

eventually, the unique nature of EC2 accelerated this. For
instances will make database access the performance bottleneck.

example, while the ability to dynamically scale up and down is
Our measurements for the configuration shown earlier indicate

always needed, the lag time associated with provisioning
that this should not be a problem if we increased the number of

hardware (in absence of a virtual data center with excess
Tomcat servers by a factor of 3 to 4. There are other ways to

capacity) makes this ability a low priority for most systems
cluster JEE web application containers. Some of them are:

deployed on traditional infrastructure. Similarly, absence of

persistent storage on EC2 instances 7 forced engineers to design, Use Terracota to store and replicate session data:
implement, test and deploy very comprehensive data and disk

Terracota is a Java based open source network attached storage backup strategies right from day one.
used for storing and replicating non-critical data8in a cluster. It

can be used to store and replicate user sessions.

Use JBoss clustering:

JBoss application server uses JGroups to provide clustering

support out of the box.

Use Memcached for replicating session data:

Memcached is another distributed object caching system which

can be used for session replication and sharing. You do need to

change a few Tomcat classes to use this. These changed classes

are available on the net with open source license.

All of the options discussed above can also be used to reduce load

on the master database by first looking up the distributed cache

for data. For scaling database transactions, MySQL clustering

(along with appropriate partitioning) is a very good option. The

MySQL clustering engine with filesystem based storage, however,

was relatively new at this time and depending on the database

schema, using a clustered engine might also require changing the
The process view shown in figure 2 shows two Tomcat

schema9.
servers, marked "JServ-01" and "JServ-02" which serve the

same set of JEE web applications. The front-end Apache In addition to mod_jk based load balancing, we could also use

server ,marked "Apache Router", serves static content and round robin DNS which relatively easy to implement. There are

several commercial solutions like Websphere Virtual Enterprise uses mod_jk for load balancing the two Tomcat servers and

and Oracle Grid which can also be used for scalability and failover for supporting failover.
but we restricted ourselves to freely available open source

You will also notice that the process view has several components components.
that have not been discussed in this document. In particular, we

It is important to realize that EC2 can only provide scalable did not discuss the Wordpress blog used by the client’s website
computing resources. Your computation itself still has to be able which was not deployed for scaling up because it was not the
to take advantage of this scalability.critical part of the website. The ability to take tests, view results

and reports and discuss course material was far more critical as

well as resource intensive hence these components were

deployed to be dynamically scalable and to support failover.

Figure 2: Process view of the application after deployment on EC2

If you application is not designed to support scaling out (horizontal

scaling), your only option is to use a larger machine instance

(scale up).

Cloud Computing Deployment of a Web Application Requiring Dynamic Infrastructure Scaling - A Case Study

S3

Is replicated on slave

Backed up matser and slave
every hour.

MySQL master node

(X64,large instance

JServ-01.

(X64, large instance)

-100P

-Jforum

Blog

X32, small instance

-SVN mirror (X32,

small instance)

Simple DB connection,

no failover

P
ri
m

a
ry

 D
B

 c
o

n
n

e
ct

io
n

P
ri
m

a
ry

 D
B

 c
o
n
n
e
ct

io
n

JServ-02.

(X64, large instance)

-100P

-Jforum

MySQL slave node

configured with

binary logging

(X64, large instance

Round robin
scheduling with
stickysessions.

S
e

c
o

n
d

a
ry

 (
fa

il
o

v
e

r)
 D

B
 c

o
n

n
e

c
ti

o
n

HTTP reverse proxy

S
u

b
v

e
rs

io
n

 r
e

a
d

 o
n

ly
 m

ir
o

r
s

y
n

c
h

ro
n

iz
e

d
 o

v
e

r
s

e
c

u
re

 t
u

n
n

e
l.

E
C

2

Off-site replication over
secure tunnel (close to
real time)

U
s

rs
e

Nagarro. GGN

-A
p

a
c

h
e

 R
o

u
te

r
a

n
d

 l
o

a
d

b
a

la
n

c
e

r
(X

3
2

,
s

m
a

ll
 i
n

s
ta

n
c

e
)

Nagarro White Paper SeriesCloud Computing Deployment of a Web Application Requiring Dynamic Infrastructure Scaling - A Case Study

One of the biggest problems with older web based clients is use of

state-full request-response cycles. Making use of today’s rich

internet clients (AJAX, Flex etc.) to design applications that use

stateless request-response cycles will also make systems far

more scalable.

computing resource provided by Amazon

...instances3

Since EC2 now provides persistent storage, backing up file-

systems on S3 is not as useful anymore

...below4
Overall, Amazon's EC2, although currently in beta (at the time of

This listing is not complete; its included for illustrative purposes
writing this document), is a mature and viable cloud based utility

only. Please refer to the Apache httpd load balancer and
computing solution for meeting computing demands of web based

mod_jk documentation for details.
applications with varying load and changing business needs. In

the beginning we had identified three main concerns with using ...server5

EC2 - lack of paid support, no support for static IP addresses for There is an additional small change needed in Tomcat

instances and no persistent storage for machine instances. configuration for mod_jk to identify which requests have

Amazon has already addressed all three of these issues and has corresponding session in which Tomcat.

since added several other features to EC2 like high CPU instances
...reads.6for CPU intensive computing, user selectable kernels and ability
The default failover behavior of the driver is read only. In our to place instances in different locations and geographic regions
case, a MySQL master node failover is considered catastrophic which makes it even more attractive for deployments like this one.
and we do not expect the master to recover.

Footnotes
...instances7

...servers1 Amazon has since introduced persistent storage for EC2 which,

These servers are also referred to as Amazon machine at the time of writing this document, is still under limited trial.

instances or simply instances.
... data8

...machine2
By non-critical, all we mean here is data which if lost will cause An Amazon machine instance is a virtual server that you start
minimal user inconvenience. using EC2 command line tools. This is the on-demand

Silicon Valley : 226 Airport Parkway, Suite 440, San Jose, CA 95110, USA; Ph : +1 (408) 436 6170; Fax : +1 (408) 436 7508

Chicago : 300 S. Wacker Drive, Suite 2335, Chicago, IL 60606; Ph : +1 (312) 235 3250; Fax : +1 (312) 873 4745

New York : 2 Penn Plaza, Suite 1500, New York, NY 10121, USA.; Ph : +1 (212) 799-2899; Fax : +1 (646) 424 - 1140

Atlanta: 400 Galleria Parkway, Suite 1500, Atlanta, GA 30339; Ph : +1 (678) 401-3131; Fax : +1 (678) 826-0688

Frankfurt : Mainzer Landstrasse 27-31, 60329 Frankfurt a. M.; Ph : +49 69 2740 150; Fax : +49 69 2740 15 111; Mobile : +49 160 82 772 75

Stockholm : Torshamnsgatan 39B, Box 13,164 93 Stockholm, Sweden; Ph : +46 (0) 8-751 35 46; Fax : +46 (0) 8 - 457 88 61

India : 15, Electronic City, Sector - 18, Gurgaon - 122015, Haryana, India; Ph :+91(124) 3048646-47, 4016775; Fax : +91 (124) 2455304

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7

