

PSA-3000

PowerSync® Analyzer

IEEE 802.3at Power over Ethernet

Product Overview

Key Features

- Industry Leading IEEE 802.3 PoE PSE Conformance Tests
- Unique Fully Automated Multi-Port PSE System Analysis
- Static PSE Loading > 42 Watts Per Port x 24 Ports
- Flexible Powered Device LLDP Emulation and LLDP Analysis
- Replaces All General Purpose Test Equipment & Fixtures
- Highly Scalable and Upgradeable Test Ports and Features
- Flexible and Accurate Measurements of Voltage, Current, Noise
- Noise Immune Triggering, Transients, & Time Interval Measurements
- Enables PSE Packet Transmission Testing with PoE Loads
- Smart Fan Control – Runs Cool and Quiet
- Flexible Script Automation and Graphical User Interface for Microsoft Windows and Linux PC's.
- Backward Compatible to Sifos PSA-1200 Analyzers

real Power from Sifos

**802.3at End-Span
PSE, Mid-Span
PSE, PSE
Controller, and
Integrated Modular
Connector
Development....**

**Versatile IEEE
802.3at
Compliance and
DV Test....**

**PSE Functional
Stressing and
Verification....**

**Fully Automated
Manufacturing
Verification....**

Overview

Power-over-Ethernet (PoE) challenges design and test engineers to evaluate multi-channel, “intelligent” DC power sources that are activated and deactivated through signaling protocols operating over several power delivery and polarity configurations. The application and management of DC power over multiple local area network connections must be completely transparent and non-disruptive to the traditional data transmission functions of those network connections.

One Box Solution

Sifos Technologies provides a **one-box solution** to facilitate complete testing and analysis of Power Sourcing Equipment (PSE) behaviors and overall compliance to the **IEEE 802.3at** specification. Each test port inside a PowerSync Analyzer is an autonomous and fully isolated instrument offering a rich set of stimulus and measurement resources. Test ports are configured and controlled via a high level automation interface, **PowerShell PSA**, and may also be accessed and managed from an intuitive graphical user interface, **PSA Interactive**.

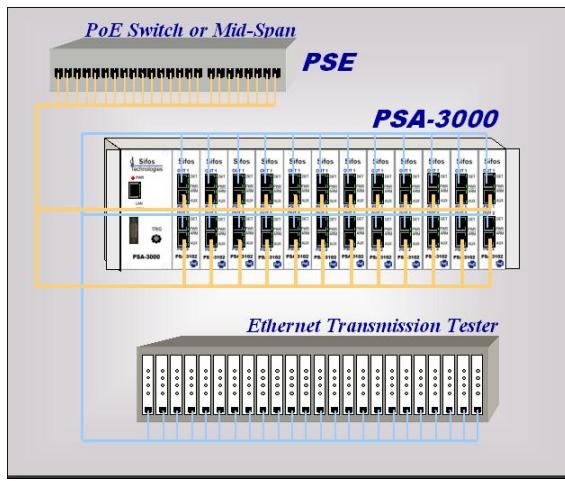
Automated PSE Conformance Testing

The PSA-3000 may be optioned via a license key to run the world's most advanced **PSE Conformance Test Suite**. This fully automated application applies the PowerSync Analyzer's diverse resources to assess over 60 IEEE 802.3at specification parameters presented in easily readable spreadsheet reports with multi-port statistics and clearly notated pass/fail limit analysis.

Automated PSE System Testing

PSA-3000's may also be optioned via a license key to run the one-of-a-kind **PSE Multi-Port System Performance Suite**. PSE Multi-Port evaluates systems of up to 192 PSE ports simultaneously to assess overall power capacities, multi-port event responses, PSE system decision making and power budgeting, and inter-port interactions and couplings.

LLDP Emulation


The IEEE 802.3at specification describes a new generation of PSE's and Powered Devices (PD's) that communicate highly resolved power needs and power allocations using Ethernet layer 2 (LLDP) link protocols. The PSA-3000 may be optioned via a license key to flexibly emulate PD's and fully analyze the new power negotiation protocols between PSE's and PD's.

Second Generation PoE Solution from Sifos

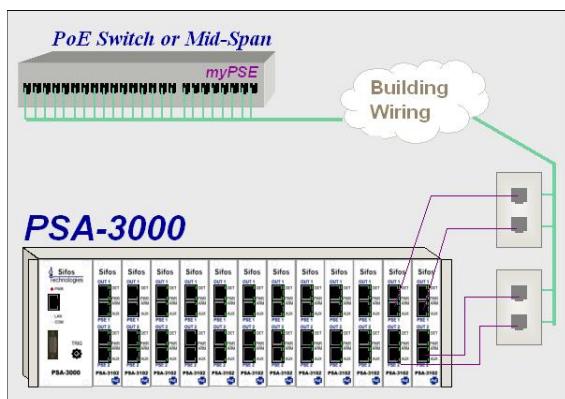
The PSA-3000 family is a second generation family of products from Sifos specifically developed to address the IEEE 802.3at specification. First generation PSA-1200 products established Sifos as the industry standard world-wide for comprehensive PSE testing and analysis. The PSA-3000 family fully supports test procedures and automation developed for PSA-1200 analyzers while offering increased static and transient load stimuli, higher set point and measurement accuracies, higher resolutions, reliable noise-immune triggering, robust LLDP emulation, active load foldback suppression, and many other advantages relative to the first generation PowerSync Analyzers from Sifos Technologies.

real Power from Sifos

PowerSync Analyzer Test Equipment Setup: PSE Testing

Per-Port PSE Test Resources

- Flexible PD Detection & Class Emulation
- Flexible Loads and Load Transients
- Event or Noise-Immune Edge Triggering of Load Transients & Measurements
- Average, Peak (Min/Max), and Trace Measurements of Port Voltage and Load Current with Flexible Sampling Intervals
- Standard One-Button Waveform Library for Rapid PSE Analysis and Conformance Troubleshooting
- Flexibly Triggered, Noise-Immune Time Intervals / Slews
- O-Scope Graphical Waveforms
- LAN Termination, LLDP Protocol Emulation and Tracing
- Concurrent Packet Transmission and PoE Load Testing
- External Trigger Input/Output


PSE Conformance Suite

- High Coverage, Fully Automated IEEE 802.3 PSE Compliance Testing and Analysis
- Over 20 PSE Tests Producing Over 65 Parameters Per Port
- Automated Test and Port Sequencing with Comprehensive, Colorful Spreadsheet Reporting
- Automatically Adapts to PSE Device Technologies
- Updated with Sifos Tracking Service Agreements
- New IEEE 802.3at PSE Conformance Test Suite (*including LLDP Emulation options*)

PSE Multi-Port Testing*

- Fully Automated PSE System Testing and Analysis Up to 192 PSE Ports
- Power Decisions & Power Management
- Power Capacity & Load Stressing
- Port Isolation & Independence
- PSE Group Timing Behaviors
- Flexible PD Emulation
- Automated Sequencing
- Colorful Spreadsheet Reporting

PowerSync Analyzer Test Equipment Setup: PoE Service Analysis

LLDP & LAN Test Support

- Flexible, Per-Port, Programmable PD LLDP Emulation for PoE with Payload, Timing, & Synchronization Control
- Fully Automated LLDP Protocol Traces and Analysis
- Test Port "Through" Channel for LAN Transmission Testing with or without PoE Port Power
- Negligible Through-Channel LAN Impairment

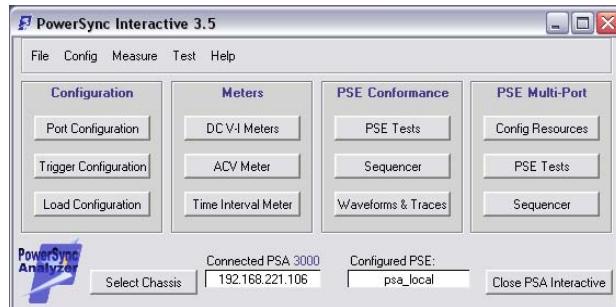
Powerful Software

- PSA Interactive GUI
- PowerShell PSA Script Automation

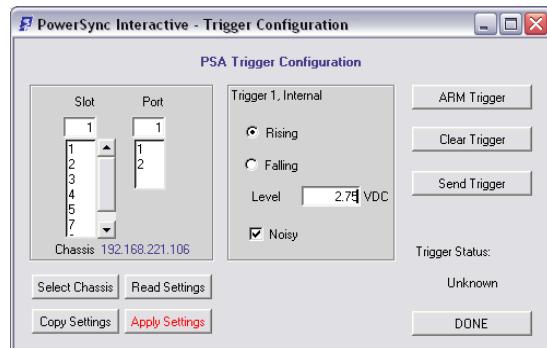
PoE Service Analyzer*

- Comprehensive Evaluation of PoE Service at a PD Interface
- PoE Service Interoperability Analysis

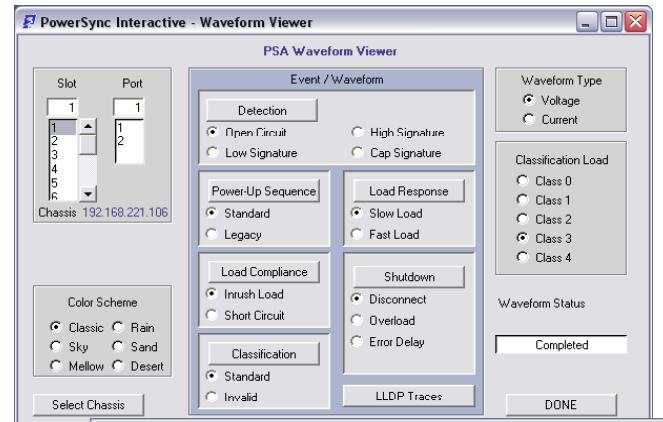
* Restricted to Type-1 (PD Classes 0 – 3) Emulations as of PSA 3.5 Software Release, April 2010. Extensions to PD Class 4 and LLDP Emulation planned in future releases.

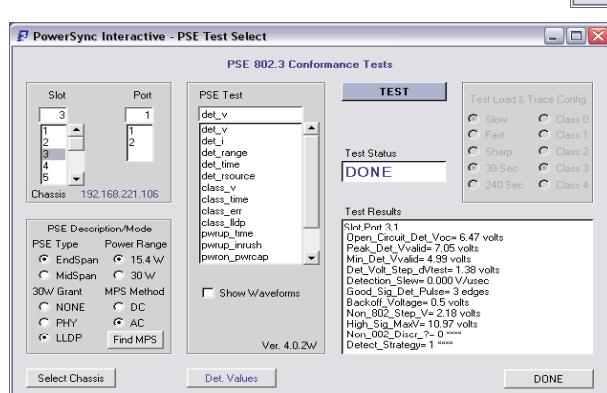

PSA Interactive Graphical User Interface

The Sifos PSA Interactive Graphical User Interface (GUI) is a flexible and powerful tool designed to allow user to quickly configure and perform both standard and user-defined measurements on IEEE 802.3 compliant power sourcing equipment (PSE). PSA Interactive provides an intuitive view of the full range of testing resources available within the PSA-3000 PowerSync Analyzer. Users can quickly harness the flexibility and power of these resources to perform design verification and diagnostic measurements or to prototype sequences that will eventually be automated in PowerShell PSA scripts.


PSA Interactive organizes PSA-3000 resources and testing features into twelve distinct subsystems:

- Port Detection Configuration
- Trigger Configuration
- Load and Load Transient Configuration and Activation
- DC Meters (Average, Max Peak, Min Peak, and Trace Voltage and Current meters)
- AC Peak Voltage Meter
- Time Interval / Slew Rate Meter
- PSE Conformance Tests
- PSE Conformance Test Sequencer
- Standard Waveform and LLDP Viewer
- Multi-Port, Multi-Chassis Configuration
- PSE Multi-Port Tests
- PSE Multi-Port Test Sequencer


PSA Interactive enables rapid multi-port configurations and one-button testing and analysis through intuitive subsystem dialogs that flexibly address test ports and PSA chassis'.


PSA Interactive Main Menu

Waveform Trigger Configuration Menu

One-Button Waveform Capture & Analysis

PSE Conformance Selected Test Menu

PowerShell PSA Tcl/Tk Interface

The PowerShell PSA Scripting Environment provides a high level, live-keyboard means to control and program automated test sequences for the PSA-3000 PowerSync Analyzer. PowerShell enables fully automated testing suites that span multiple ports, blades, and frames. Built upon the popular Tool Command Language (Tcl), it offers an extensive and extensible programming language.

PowerShell PSA provides a complete API for the PSA-3000 including high level commands that execute and sequence standard **802.3 PSE Conformance** and **Multi-Port System** test suites. PowerShell commands access all of the resources of the PSA-3000 and enable the rapid development of highly customized test scripts. PowerShell fully supports off-line script development and debug through its robust built-in emulation mode.

PowerShell PSA libraries can be integrated into broader Tcl environments that interlace traditional network transmission tests with Power-over-Ethernet tests. This enables seamless integration of custom or standard PSE tests with existing Tcl-based test suites.

Other features offered by the PowerShell Tcl environment include:

- Interpretive command execution (no compilation, simple debug)
- Simple, intuitive PowerSync Analyzer commands (API)
- Integrated command "help" tools
- Full access to PSA triggering and signal synchronizing features
- Fast test execution speeds
- Script-configured test report files
- Use in tandem with PSA Interactive GUI
- AnyEdit Smart Editor for PowerShell PSA
- Traditional Tcl Console or Command-Knowledgeable Wish Console with PSA waveform viewer capability

PSE Multi-Port System Performance Test Suite

The unique and innovative PSE Multi-Port Test Suite is a library of **fully automated** and **flexibly sequenced** tests that characterize system behaviors of PSE's as they deliver power to groups of many (up to 192) Powered Devices (PD). It enables highly flexible configuration of **PD emulation** characteristics and reports numerous system characteristics including power capacities, power management decisions, port independence and isolation characteristics, port timing characteristics, and stress or burn-in performance.

See **Sifos Technologies Multi-Port Test Suite** overview for further information regarding the Multi-Port Test Suite.

IEEE 802.3 PSE Conformance Test Suite

The IEEE 802.3 PSE Conformance Test Suite is a library of **fully automated**, **flexibly sequenced**, and **self-adapting** tests that provide a high degree of specification compliance testing on PSE ports without the need for any external instrumentation. These tests are accessible to both PSA Interactive (GUI) and to PowerShell.

The **PSE Conformance Test Suite** consists of the following modules for testing **802.3at compliant Type-1** and **Type-2** PSE's:

- Detection Voltages
- Detection Current Compliance
- Detection Acceptance Range (R and C)
- Detection Timing
- PSE Source Resistance
- Classification Voltage
- Classification Timing
- Classification Errors
- LLDP Negotiation Protocol
- Power-Up Turn-On and Rise Time
- Power-Up Inrush Compliance
- PSE Voltage, Ripple, & Noise
- PSE Power Capacity
- Extreme Overload Tolerances
- Transient Overload Tolerances
- DC MPS Validity
- DC MPS Shutdown
- AC MPS Shutdown
- AC MPS Signal Characteristics
- Overload Shutdowns
- Turn-Off Time
- Turn-Off Voltage
- PSE Output Capacitance & Shunt Resistance

Each PSE Conformance Test captures and reports one or more parameters that are directly related to the IEEE 802.3 specification. Under sequencer control, multiple PSE tests can automatically sequence across multiple PSE ports in accordance with user selections.

The 802.3 PSE Conformance Test Suite includes several report generation options including automatic Microsoft Excel spreadsheet that reports test results, test statistics, test limits, and pass/fail results on one or more cycles of testing. A partial sample of a **PSE Conformance Test Suite** test report is shown below:

PSA TEST RESULTS										802.3at Conformance Report						
										version 4.02W						
										Test Mode: 30W Wet LLDP report version 3.5						
										Sifos Technologies Sifos Interop Index: 88% Error Log: None						
Chassis ID: 192.168.221.103	1-1	1-2	2-1	2-2	3-1	3-2	4-1	4-2	UNITS	Mn	Max	Average	Low Limit	PF	High Limit	PF
TestLoop: 1																
Test: det_v																
Open_Circuit_Det_Voc=	13.9	13.98	14.18	13.78	13.7	13.8	13.98	14.13	volt	13.7	14.18	13.9125	28	Pass	30	Pass
Peak_Det_Vvalid=	7.06	6.97	7.12	7.05	6.99	7.04	6.93	7.01	volt	6.93	7.12	7.0125	38	Pass	10	Pass
Min_Det_Vvalid=	4.99	4.96	5.08	5.03	4.99	5.01	4.95	4.99	volt	4.95	5.03	5	28	Pass	8	Pass
Det_Volt_Step_dVtest=	1.35	1.31	1.34	1.35	1.43	1.32	1.4	1.39	volt	1.31	1.43	1.3125	1	Pass	72	Pass
Detection_Slew=	0	0	0	0	0	0	0	0	V/usec	0	0	0	0	Pass	0	Pass
Good_Sig_Det_Pulse=	3	3	3	3	3	3	3	3	edges	3	3	3	1	Pass	5	Pass
Backoff_Voltage=	0.4	0.3	0.4	0.4	0.4	0.4	0.4	0.3	volt	0.3	0.4	0.375	0	Pass	3	Pass
Non_802_Step_V=	0	0	0	0	0	0	0	0	volt	0	0	0	0	Pass	0	Pass
High_Sig_Max=	10.92	10.84	10.97	10.99	10.97	10.99	10.94	10.94	volt	10.84	10.99	10.945	38	Pass	11	Pass
Non_802_Discre_7=	0	0	0	0	0	0	0	0	***	0	0	0	0	Pass	2	Pass
Detect_Strategy=	0	0	0	0	0	0	0	0	****	0	0	0	0	Pass	2	Pass
Test: det_i																
Init_Current_1sc=	0.22	0.21	0.22	0.22	0.21	0.22	0.22	0.22	mA	0.21	0.22	0.2175	0	Pass	3	Pass
Det_Current_1sc=	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	mA	0.17	0.17	0.17	0	Pass	3	Pass
Test: det_range																
Rgood_Max=	31	30	31	30	31	30	31	31	Kohm	30	31	30.625	25	Pass	32	Pass
Rgood_Min=	17	17	17	17	17	17	17	17	Kohm	17	17	17	15	Pass	19	Pass
Rmid_det=	31	30	31	30	31	30	31	31	Kohm	30	31	30.625	25	Pass	33	Pass
Cgood_Max=	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	uF	0.14	0.14	0.14	0	Pass	10	Pass
Test: det_time																
Backoff_Time_Tdbo=	55	55	59	59	55	55	55	59	msec	55	55	55.6	-1	Pass	1600	Pass
Eff_Backoff_Tdbo_eff=	55	55	59	59	55	55	55	59	msec	55	55	55.6	-1	Pass	1600	Pass
Backoff_Type=	0	0	0	0	0	0	0	0	****	0	0	0	0	Pass	1	Pass
Detection_Time_Tdet=	289	293	293	293	293	293	293	293	msec	289	293	292.5	5	Pass	500	Pass
Total_Det_Time=	297	301	301	301	297	301	301	301	msec	297	301	300.5	5	Pass	1000	Pass
Test: det_resource																
Output_Impedance_Zout=	152.9	182.9	129.1	182.9	187.4	149.2	165	188.8	KOhm	121	188.8	167.275	45	Pass	200	Pass
Test: class_v																
Class_Voltage_Vclass=	17.3	17.2	17	16.7	17.2	17	17	16.8	volt	16.7	17.3	17.025	15.5	Pass	20.5	Pass
Vclass_Min=	17.2	17.1	16.9	16.7	17.1	16.9	16.9	16.7	volt	16.7	17.2	16.925	15.5	Pass	20.5	Pass
Test: class_time																
Event_Count=	1	1	1	1	1	1	1	1	****	1	1	1	1	Pass	2	Pass
Class_Time_Tpde=	37.1	37.1	37.1	37.1	37.1	37.1	37.1	37.1	msec	37.1	37.1	37.1	37.1	Pass	75	Pass
Test: class_err																
Class_lim=	75	75	75	75	75	75	75	75	mA	75	75	75	51	Pass	100	Pass
Vport_CL_lim=	52.9	52.9	52.8	52.8	53	52.8	52.8	52.9	V	52.8	53	52.925	0	Pass	205	Pass
Vport_CL_err_1=	17.1	17	16.8	16.6	17.1	16.9	16.8	16.6	V	16.8	17.1	16.825	0	Pass	205	Pass
Test: class_lldp																
PSE_Source_Priority=	0	0	0	0	0	0	0	0	*	0	0	0	0	Pass	0	Pass
PSE_MDI_Pwr_Sup=	9	9	9	9	9	9	9	9	*	9	9	9	9	Pass	0	Fail
PSE_LLDP_Time_2=	17.3	16.6	17.3	16.6	18	17.1	17.3	16.6	sec	16.6	17.3	17.1	0	Pass	10	Fail
PSE_LLDP_Type_2=	2	2	2	2	2	2	2	2	*	2	2	2	2	Pass	2	Pass
PSE_Echo_Time_2=	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	sec	0.4	0.4	0.4	0.4	Pass	0	Pass
PSE_Alloc_Pwr_2=	20.3	20.3	20.3	20.3	20.3	20.3	20.3	20.3	Watts	20.3	20.3	20.3	20.3	Pass	25.5	Pass
PSE_Alloc_Time_2=	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	sec	0.4	0.4	0.4	0.4	Pass	30	Pass
PD_Power_Adjust_2=	25.5	25.5	25.5	25.5	25.5	25.5	25.5	25.5	Watts	25.5	25.5	25.5	25.5	Pass	25.5	Pass
PSE_Adjust_Time_2=	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	sec	0.4	0.4	0.4	0.4	Pass	10	Pass
Test: pwrup_time																
Pwr-On_Rise_Time_Trise=	62	64	62	61	60	61	64	62	usec	60	64	62	15	Pass	50000	Pass
Power-On_Time_Tpon=	386.7	390.6	390.6	390.6	390.6	386.7	394.5	394.5	msec	386.7	394.5	390.6	0	Pass	400	Pass
Test: pwrup_inrush																
Init_Inrush=	441.5	442.13	439	442.5	440.25	442.88	437.75	439.75	mA	437.75	442.88	440.72	400	Pass	512	Pass
Max_Inrush_Cd=	438.88	441	436.75	439.63	441.5	442.63	436.13	438.63	mA	436.13	442.63	439.3975	400	Pass	493	Pass
Min_Inrush=	433.75	434.5	433.8	435.25	437.38	438.38	431.25	434.5	mA	431.25	433.38	434.2975	400	Pass	493	Pass
Inrush_45m=	54.5	55.3	54.8	54.9	54.5	54.9	55.3	55.3	msec	54.5	55.3	54.925	50	Pass	75	Pass
Inrush_45m=	52.9	52.9	52.8	52.8	52.9	52.8	52.8	52.9	Volts	52.8	52.9	52.825	51	Pass	51	Pass
Inrush_Voltage=	35.5	35.6	35.4	35.6	35.7	35.6	35.5	35.4	Volts	35.3	35.7	35.525	51	Pass	51	Pass
Max_Init_Inrush=	559.5	560.5	560.8	561.3	561	560	562	560	mA	559.5	560.5	560.525	0	Pass	200	Pass
Inrush_Strategy=	0	0	0	0	0	0	0	0	****	0	0	0	0	Pass	3	Pass
Test: pwrwn_pwrcap																
Pcon_cd=	27	27	26.9	27	27	27	27	27	waits	26.9	27	26.975	30	Fail	36.9	Pass
Icon_cd=	517	516	516	517	516	517	517	517	mA	516	517	516.525	553	Fail	683	Pass
Type-2_Enable=	0	0	0	0	0	0	0	0	****	0	0	0	0	Pass	0	Pass

PoE LLDP Emulation and Analysis

The PSA-3000 includes a subsystem designed to flexibly emulate LLDP capable PD's on a per test port basis. Fully automated applications allow in depth capture and analysis of protocol between the PSE and the PD.

See [Sifos Technologies, LLDP Emulation and Analysis Overview](#) for further information on this topic.

PoE Service Analyzer Application

The PoE Service Analyzer is a special automated test and reporting application to enable comprehensive parametric and interoperability analysis at any PD connection point in a PoE enabled wiring plant.

See [Sifos Technologies, PoE Service Analyzer Product Overview](#) for further information regarding the PoE Service Analyzer.

Technical Data: PSA-3000

LAN Interface Specifications			
Operating Mode	Signal Path	Parameter	Specification
Data Through Mode	PSE-# to OUT-#	Connections	RJ45
		Data Rates and Signaling	10/100/1000BaseT
		Latency	0 (Passively Coupled)
		Impedance	100Ω, Balanced
		Pair-Pair Isolation	≥ 36dB @ 100MHz
		Insertion Loss	≤ 2dB, 0.1MHz to 100 MHz
		Insertion Loss Variation	≤ 0.75dB, 0.1MHz to 100 MHz
		Return Loss (OUT pairs terminated into 100Ω)	≤ -24dB, 1MHz to 100MHz
Data Connect (LLDP Emulation) Mode	PSE-# to Blade Transceiver	Connection	RJ45
		Data Rate and Signaling	10BaseT
		Orientation	MDI End Point
		Protocol	802.1ab, 802.3bc, 802.3at
		Impedance	100Ω, Balanced
		Return Loss	≤ -20dB, 1MHz to 100MHz

PoE Port Connections			
Operating Mode	Dependency	Parameter	Selections
2-Pair Power	Port 1 and Port 2 operate independently	Powered Pair	ALT-A or ALT-B
		Polarity	MDI or MDI-X
4-Pair Power	Connect to Port 2 (Port 1 bypassed)	Powered Pair	ALT-A and ALT-B
		Polarity	MDI or MDI-X for each pair

Detection and AC MPS Specifications			
Description	Conditions	Parameter	Specification
Detection Resistance	Vport = 2.5VDC - 12VDC, Port Connected, Transition Current Load = 0	Range	9 KΩ to 39 KΩ
		Resolution	1 KΩ
		Accuracy	≤ 24KΩ, ± 250Ω
		ΔV / ΔI at 1 Volt Spacings	> 24KΩ, ± 400Ω
Detection Capacitance	Vport = 2.5VDC - 12VDC, Port Connected, Transition Current Load = 0	Range	0.14, 5, 7, 11 μF
		Accuracy	15%
Detection Signature Cut-Off Threshold	Port Connected	Vport	12V ± 2%
AC MPS Signature	Vport = 12VDC - 60VDC, Port Connected	AC Impedance	24KΩ (0.1μF + 330Ω)
		Resistance Accuracy	22.8KΩ, ± 250Ω
	Port Isolated	AC Impedance (≤ 500 Hz) AC Impedance (≤ 120 Hz)	≥ 1.1 MΩ ≥ 3.0 MΩ

Current Load Specifications			
Description	Conditions	Parameter	Specification
Load Current	Per Powered Pair	Range	0 to 750 mA
		Resolution	0.25 mA
		Accuracy	± 0.5% ± 0.25mA
		Slew Rates	> 4mA / μsec
		Activation Voltage	15V, Rising Vport
		De-Activation Voltage	14V, Falling Vport

Current Load Specifications			
Transition Current	Load Current Active, Per Powered Pair	Range	0 to 400 mA
		Resolution	0.25 mA
		Accuracy	$\pm 0.5\% \pm 0.25\text{mA}$
		Slew Rates	> 4mA / μsec
		Activation Voltage	14V, Falling Vport
		De-Activation Voltage	6V, Falling Vport
Configurable Load Transient	Vport > 15VDC	Load Step 1 Range	0 to 2000 mA
		Load Step 2 Range	0 to 750 mA
		Resolution (0 – 1023 mA)	0.25 mA
		Resolution > 1023 mA	0.50 mA
		Accuracy	$\pm 1\% \pm 0.5\text{mA}$
		Slew Rates	> 4mA / μsec
		Steps	2
		Load Step 1 Duration < 1024 mA	200 μsec to 1 sec
		Load Step 1 Duration > 1023 mA	200 μsec to 80 msec
		Load Step 2 Duration	20 μsec to 1 sec (or persist)
		Step Resolution	100 μs
		Saturated Load Eff. Resistance	37 Ω
		Foldback Suppression Minimum Port Voltage (@ 400mA PSE Current Limiting)	33 VDC
		Foldback Suppression Duration	Step 1 + Step 2 Duration

DC Metering Specifications			
Description	Conditions	Parameter	Specification
Voltage Meter	Average, Max-Peak, Min-Peak, Scope Trace	Voltage Range	0 - 60V
		Trace Length	256 Samples
		Sample Rates	39.1 μsec – 39.1 msec (10msec -- 10sec traces)
		Resolution	0.025 V
		Accuracy ¹	$\geq 30\text{VDC}: \pm 1.5\% + 15.6\text{ mV}$ $< 30\text{VDC}: \pm 2.0\% + 15.6\text{ mV}$
		Measurement Triggers	Immediate, Edge, Event
Current Meter	Average, Max-Peak, Min-Peak, Scope Trace	Current Range	0 – 2000 mA
		Trace Length	256 Samples
		Sample Rates	39.1 μsec – 39.1 msec (10 msec -- 10sec traces)
		Resolution (0 – 1023 mA)	0.25mA
		Resolution (1024 – 2000 mA)	0.5mA
		Accuracy ²	$\pm 0.5\% \pm 0.5\text{mA}$
		Triggers	Immediate, Edge, Event

1. Does not include Voltage drop due to cable losses and 0.45 Ω maximum test port input resistance.

2. Does not include Port-Connected MPS current, which is approximately (Vport - 12V)/24k Ω .

AC Metering Specifications			
Description	Conditions	Parameter	Specification
AC Peak-Peak Meter	Low Band	3dB Bandwidth	16Hz – 500Hz
		3dB Bandwidth	1500Hz – 300kHz
		3dB Bandwidth	16Hz – 300kHz
	All Bands	Resolution	1mV
		Accuracy	2% \pm 8mV
		Range	1Vp-p

Triggering Specifications			
Description	Conditions	Parameter	Specification
Edge & Event Triggers	All Modes	Range	0.25V - 59.5V
		Resolution	0.125 mV
		Accuracy (relative to DC Meter)	± 0.0625 mV
		Trig1 to Meter or Transient Latency	~ 50 μ secs
		Event Trigger Latency	< 500 μ secs
	Trigger Noise Immunity	Pre-Trigger Qualification Time (Voltage below Rising threshold or above Falling threshold)	1.5 msec
		Normal Mode Edge Noise Rejection	125 mV
		Noisy Mode Edge Noise Rejection	500 mV

Time Interval Metering Specifications			
Description	Conditions	Parameter	Specification
Time Interval Meter	Microsecond scale	Time Range	4 – 26200 μ s
		Time Resolution	1 usec
		Time Accuracy	± 2 μ secs
		Min. Resolvable Time Interval	~ 4 μ secs
	Millisecond scale	Time Range	2-6550 ms
		Time Resolution	0.1 msec
		Time Accuracy	± 1 msec
		Min. Resolvable Time Interval	2 msec
	Second Scale	Time Range	0.1 – 16.1 sec
		Time Resolution	0.1 sec
		Time Accuracy	± 0.05 sec
		Min. Resolvable Time Interval	0.1 sec
	Triggering & Noise Immunity	Start Trigger	Edge or Event
		Stop Trigger	Edge
		Normal Mode Edge Noise Rejection	125 mV
		Noisy Mode Edge Noise Rejection	500 mV

LED Indicators			
LED Label	Parameter	Description	
DET	Detection Enabled	ON: Valid Detection Signature Connected (R= 19 to 26 K Ω , C= 0.1 μ F) AND Port Switch Connected BLINKING: Configured for LAN Termination. Long on-time blink for LINK UP, short on-time blink for UNLINKED. OFF: Invalid or no PD Signature AND configured as through.	
PWR	PSE Power On	ON: Indicates Power-Up with Vport > 36 VDC (Regardless of Trigger State) OFF: Vport < 36 VDC	
ARM	Trigger ARM	ON: Trigger 1 in the ARMED State OFF: Trigger 1 NOT in the ARMED State	
AUX	Communications	ON or BLINKING: Indicates Communications to PSA Test Port	

Programming and Control			
Description	Specification		
Interface	Ethernet 10/100BaseT		
Host Requirements	PC running Microsoft Windows NT, 2000, XP, Vista, or Linux PC (Fedora, SUSE)		
Control Environment	Sifos PowerShell or PSA-Interactive		
Recommended Network Latency:	< 5 msec		

Physical and Environmental

Description	Specification
Dimensions	19" W x 5.25" H x 12" L (3U Rack Mount)
Weight	20.4 lbs. (Fully Populated with PSA-3102 Cards)
Power	100VAC-240VAC, 50-60 Hz, 1350mA Max.
Ambient Operating Temperature	0°C to 50°C (≤ 42.75 Watt loading per port)
Storage Temperature	-20°C to 85°C
Operating Humidity	5% to 95% RH, Non-Condensing.

Certifications

Description	Certifications
Emissions	FCC Part 15, Class A Meets EN55022 VCCI, AS/NZS 3548
Safety	CSA Listed (CSA22.2 No. 61010) Meets EN61010-1 CB Scheme IEC 61010-1
European Commission	Low Voltage Directive (73/23/EEC) Electromagnetic Compatibility Directive (89/336/EEC) CE Marking Directive (93/68/EEC)

FCC Statement:

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at their own expense.

Ordering Information

PSA-3000, PowerSync Analyzer 3000 Chassis & Controller, PowerShell PSA, and PSA Interactive Software

PSA-3102, Dual Port PoE+ PSE Test Card for PSA-3000

PSA-CT, PSE Conformance Test Suite for One PSA Controller (Up to 24 Test Ports)

PSA-MPT, PSE Multi-Port Test Suite for One PSA Controller (Up to 24 Test Ports)

PSA-TS1, PSE Automated Test Suite Tracking Service for One Year for One PSA Controller

PSA-TS2, PSE Automated Test Suite Tracking Service for Two Years for One PSA Controller

PSA-3000U, PSA-1200 to PSA-3000 Chassis and Controller Upgrade

PSAEF-2L-CREDIT, Credit for PSA-1200 Dual Port Test Card Trade-Up to PSA-3102

PSA-LLPD, LLDP Emulation and Analysis Feature for One PSA-3000 Controller

Accessories Included:

- Installation Guide & Configuration Chart
- PowerSync Analyzer Reference Manual (Binder and CD)
- Power Cord
- Cross-Over Ethernet Cable
- RS-232 Cable

Sifos Technologies, Inc.

1061 East Street

Tewksbury, MA 01876

+1 (978) 640-4900

www.sifos.com

sales@sifos.com

real Power from Sifos