
it is completely extracted from the blood into the brain
and that it remains fixed within the brain without redistri
bution. Ofcourse, only microspheres injected directly into
the carotid artery satisfy these requirements completely.
Nevertheless, those radiotracers that are available for brain
perfusion imaging follow rCBF closely enough to be din
ically useful. Furthermore, most routine clinical applica
tions of brain perfusion SPECT do not require quantita
tion of TCBF and rely on the generation of images which
reflect tracer uptake and retention only. Quantitation of
regional cerebral blood flow with these radiotracers re
quires arterial sampling and careful modeling to account
for incomplete extraction, back flux from the brain and
other deviations from the theoretical model (1). Despite
these constraints, intravenous injection of brain perfusion
radiotracers results in regional brain activity which corre
lates well with independent measures of rCBF over a wide
range of flows.

Iodine-l23-isopropyl iodoamphetamine (IMP, Spec
tamine) was the first brain perfusion tracer to be synthe
sized and remains the most ideal with respect to its kinetics
(2,3). Iodine-123 is not an ideal@ radionuclide since it is
not generator-produced and emits high-energy photons.
The distribution of IMP reflects rCBF over a wide range
of flows but may underestimate flow when plasma pH is
low, as in cerebral ischemia or acidosis (1). Its first-pass
extraction by the brain is high, and peak activity is reached
within 15 to 20 mm (4). Brain imaging must be accom
plished quickly after injection since redistribution is fairly
rapid and significant changes can be observed after 60
mm. Since [â€˜23I)IMPis prelabeled by the commercial
supplier, logistic problems occur and emergency studies
are difficult to schedule. With the standard injected dose
of 3â€”6mCi, the photon flux is low and image quality is
not as good as that with the technetium-labeled ligands.
This becomes a particular problem with high-resolution
imaging systems.

Technetium-99m brain perfusion agents benefit from
the optimal physical characteristics of the radionuclide,
including its 140 keV monoenergetic photon, 6-hr half
life and potential for on-site labeling. Of the 99mTc radio
pharmaceuticals that have been synthesized, only 99mTc@
HMPAO (hexamethylpropyleneamine oxime, Ceretec) is
currently available in the United States. It is a highly
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ingle-photon emission computed tomography
(SPECT) techniques provide a powerful window into the
function ofthe brain and promise to become an important
component of the routine clinical evaluation of patients
with neurological and psychiatric diseases. While it initially
appeared that brain SPECT would suffer from a number
of limitations relative to positron emission tomography
(PET), recent improvements in instrumentation and radio
pharmaceuticals as well as increasingly compelling clinical
evaluations suggest a primary role for SPECT in the diag
nosis ofa number ofhighly prevalent neurological diseases.
SPECT imaging, even with high-resolution systems, is
substantially less expensive than PET and is more widely
available. Furthermore, a number of novel approaches to
diagnosis have been developed for SPECT exclusively. The
implementation of this method into clinical practice has
been slow, however, and its appropriate utilization will
require much closer collaboration between nuclear medi
cine physicians, neurologists, psychiatrists and neurosur
geons.

RADIOPHARMACEUTICALS

Functional brain imaging requires radiotracers that
cross the blood-brain barrier, distribute proportionally to
regional cerebral blood flow and remain fixed in the brain
for a sufficiently long time to permit SPECT imaging.
Alternatively, blood flow can be measured quantitatively
from the clearance of the inert gas â€˜33Xewith highly
sensitive instrumentation that can image its distribution
repeatedly during its rapid clearance from the brain.

For radiotracers that have a very slow clearance from
the brain, estimates of regional cerebral blood flow (rCBF)
are based on the microsphere model, which assumes that
the radiotracer is freely diffusible from the blood pool, that
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soluble macrocyclic amine with rapid brain uptake but
only moderate first-pass extraction, which results in under
estimation of rCBF (5,6). When regional cerebral blood
flow is quantified, this underestimation can be corrected
by accounting for the freely exchangeable component of
HMPAO. Of the brain perfusion agents, 99mTc@HMPAO
is the closest to a microsphere with virtually no brain
washout. The tracer remains fixed in the brain following
conversion to a hydrophilic compound in the presence of
intercellular glutathione ( 7). Because blood clearance is
slow, perfusion defects are not seen as sharply as with other
brain perfusion tracers. Technetium-99m-HMPAO fol
lows blood flow and, when flow and metabolism are
uncoupled as they are in luxury perfusion, 99mTc@HMPAO
may be increased or normal, while [â€˜231]IMPmay indicate
a profound metabolic defect (8). The radiopharmaceutical
is chemically unstable in vitro and must be injected im
mediately after preparation.

Technetium-99m-ECD (ethyl cysteinate dimer, Neurol
ite) is currently undergoing clinical testing (9,10). Like
99mTc..HMPAO,it has moderate cerebral extraction and
underestimates rCBF. Brain uptake is rapid and clearance
from the brain is very slow. Blood clearance is rapid,
resulting in a higher brain-to-background activity ratio
than with HMPAO. Furthermore, 99mTc@ECDis stable in
vitro.

With the inert gas clearance technique, rCBF is esti
mated from the clearance of â€˜33Xefrom the brain following
inhalation of the gas (11,12). This methodology can be
coupled with SPECT with specially designed instrumen
tation. Because of the rapid clearance of the tracer, mul
tiple studies can be performed on the same day. Quanti
tative measures can be obtained without arterial sampling.
Limitations of â€˜33XeSPECT include the low photon energy
ofthe tracer and its rapid clearance from the brain, which
lead to poor spatial resolution. Specialized instrumenta
tion is required with very high sensitivity in order to obtain
multiple images during the clearance of the tracer from
the brain. The inhalation technique is more technically
difficult than the intravenous method using brain perfu
sion radiotracers.

INSTRUMENTATION

A wide variety of imaging systems capable of high
resolution brain SPECT are now available commercially.
They fall into two categories: noncamera-based and cam
era-based systems. Noncamera-based systems include ro
tating detector arrays, fixed detector systems and multi
detector scanners. The rotating detector array group in
cludes the Hitachi four-head system, and the more
prevalent Tomomatic two-, three- and five-slice machines
(Medimatic, Inc). The Tomomatic's most characteristic
attribute is that it is capable of â€˜33XeSPECT, because it
has high sensitivity and can do rapid dynamic imaging
(12). The Tomomatic, by changing collimators, can also
produce images of relatively high resolution (9â€”10mm)

using 99mTcHMPAO or [â€˜231]IMP.Collimator exchange is
not difficult, permitting case-by-case selection between
â€˜33Xeand high-resolution scans. The Hitachi rotating de
tector array system is also capable of both â€˜33Xeand high
resolution (8â€”10mm) static imaging (13).

The original fixed-detector research systems that use
multiple detectors were the SPRINT (14) and the HEAD
TOME (15). They were designed with fixed detectors
oriented in a ring geometry with an internally rotating
collimator. The Shimadzu (HEADTOME) system, which
is commercially available, is capable of high sensitivity
â€˜33Xestudies and moderate spatial resolution (10â€”12mm)
using 1231or 99mTc.

The original multidetector scanner was the unit devel
oped by Stoddart and colleagues (16), also known as the
Harvard multidetector scanner (1 7), and is commercially
available as the Strichman unit. This is a slice-based torn
ograph, as are the Hitachi, Shimadzu and Tornomatic, but
it is built with very thick crystals that operate much like
pinhole cameras as they traverse through space to obtain
tomographic data. Hill et al. have demonstrated that this
device can image not only 99mTcand 1231,but also â€˜8Fin a
single-photon (not PET) mode (18). It cannot perform
â€˜33XeSPECT.

Gamma camera-based systems are more prevalent today
than dedicated tomographs, primarily because they can do
both head and body SPECT. There are two forms: singje
head and multihead systems. Modern tomographs have
overcome many of the limitations of the original systems,
such as poor head alignment, magnetic field aberrations
and inadequate uniformity and linearity for tomography.
A few of the modern single-head systems have also been
designed to circumvent shoulders so that minimal radius
scanning is possible. Most of these systems provide fairly
high-resolution images with static tracers. Unfortunately,
they suffer from poor sensitivity and prolonged imaging
times.

Researchersfrom the University of TexasSouthwestern
Medical Center at Dallas, in collaboration with the nuclear
engineering division of Technicare, developed the first
three-head gamma camera SPECT system (19) to address
the limited sensitivity of single-head systems. Their intent
was to provide a system capable of both body and head
SPECT at high resolution with static tracers and with
adequate sensitivity and rotation speed for dynamic to
mography with â€˜33Xe.The first three-head system was
installed in Dallas in late 1987 under the sponsorship of
Ohio Imaging, now a division of Picker. Additional three
head SPECT instruments have been produced by Trionix
and Toshiba. Prototype three-head instruments from Gen
eral Electric and Siemens are also under evaluation. Cur
rently, there are approximately 150 such units installed,
indicating increasing acceptance of this technology.

A variant of the gamma camera approach utilizes a
single annular sodium iodide crystal (20â€”22). The AS
PECT system, which is now commercially available, uses
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a fixed annulus with rotating collimators (22). It yields
high spatial resolution (5.5â€”6.5mm) with excellent sensi
tivity. Xenon-133 dynamic SPECT acquisition is currently
under development.

State-of-the-art SPECT systems can be expected to pro
vide high-resolution (6â€”9mm) imaging of statically dis
tributed brain radiopharmaceuticals with patient imaging
times of 10â€”20mm. All of the currently available three
head, annular and fixed detector ring systems (Picker,
Trionix and Toshiba) offer excellent spatial resolution:
with appropriate collimators and 99mTc@HMPAO, 6 mm
resolution in the cortex and about 7 mm at the center of
the brain. With [â€˜231]IMP,the photon flux is reduced, thus
requiring careful image processing to achieve equivalent
spatial resolution. Images of99mTc@HMPAOand [â€˜231]IMP
from the same normal control subject obtained on a three
headed tomograph are shown in (Fig. 1).

Systems should also be capable of sequential image
acquisition; it should be possible to acquire multiple short
studies back to back and subsequently discard segments
degraded by patient motion. Software should support dy
namic filtering, multiple angle (oblique) reconstructions,
surface-variable attenuation correction and three-dimen
sional as well as conventional cross-sectional displays. The
merging ofanatomic information from CT and MRI with
SPECT is also necessary for accurate diagnosis and local
ization (23) and should be a critical element ofthe software
package. Three-head and annular systems in theory should
be capable of â€˜33XeSPECT. However, dynamic scanning
has not been accomplished with any camera-based system.
There is work in progress demonstrating such feasibility
for the Picker and Toshiba systems.

SPECT systems should have adequate energy resolution
and multiwindow capability in order to separate 99mTcand
1231 radiotracers in the same patient (24,25). While typical

gamma-camera energy resolution (12%â€”15%FWHM) is
insufficient to separate 140 keY (@mTc)from 159 keV
(1231) photopeaks, high-resolution multidetector SPECT

units have substantially improved energy resolution. The
images shown in Figure 1 were obtained simultaneously
using dual-isotope imaging of @mTc@HMPAOand [1231]
IMP.

CEREBROVASCULAR DISEASE

The measurement of rCBF in patients with cerebrovas
cular disease was the earliest application of SPECT of the
brain. Numerous reports in the last decade describe appli
cations for SPECT rCBF imaging in stroke, transient is
chemic attacks (TIA), subarachnoid hemorrhage (SAH),
arteriovenous malformation (AVM) and other derange
ments ofcerebral hemodynamics. Several valuable reviews
are available (26â€”28).Many ofthese reports promote both
diagnostic and prognostic roles for SPECT rCBF imaging
of cerebrovascular disease, although criticisms have been
raised that current investigations do not directly address
the questions of greatest importance to the referring phy
sician (29,30).

SPECT is superior to anatomical imaging procedures in
detecting cerebral ischemia during the first hours following
an ictus because rCBF alterations occur earlier and are
better defined than structural changes. Knowledge of per
fusion status has important clinical applications in the
differential diagnosis and initial management of patients

FIGURE 1. High-resolution
SPECT images of @â€˜Tc
HMPAO (left) and [123I]IMP
(right) in the same normal vol
unteer. Images were obtained
simultaneously by dual-isotope
acquisitionof the two radiotra
cars injected sequentially. A
128 x 128 acquisitionmatrix
was employed using a high
resolution(7â€”8mm)fanbeam
collimatorand a three-headed
SPECT system. Note similar
image resolution for both brain
bloodflowtracers.
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with cerebrovascular disease. In patients with TIA, SPECT
may provide the only objective documentation ofthe ictus.
The detection of hemodynamic alterations is also impor
tant in patients with silent strokes and other asymptomatic
lesions to facilitate patient subtyping and management.

Stroke
SPECT is useful in the detection ofacute cerebral ische

mia. Regional CBF alterations occur instantly in patients
with stroke, while CT and MRI are typically normal during
the first hours to days after the ictus (Fig. 2). For example,
by 8 hr after infarction, only 20% of CT scans will be
positive (31,32), while at the same time approximately
90% of SPECT rCBF scans will be abnormal (33,34). The
difference in sensitivity between structural and functional
imaging modalities disappears within about 72 hr. In
addition, the sensitivity of SPECT is significantly reduced
for lacunar infarctions.

Sensitivity for lesion detection is also affected by luxury
perfusion (35), wherein perfusion and metabolism become
decoupled beginning approximately 5 days after the ictus,
and continuing for as much as 20 days (Fig. 3). Although
this phenomenon is not well understood, it is well docu
mented (8,12,26,27) and false-negative studies can result
during this period. Thus, acute rCBF imaging may be
effective, but imaging during the subacute phase is insen
sitive, particularly with 99mTc@HMPAO(8).

Crossed-cerebellar diaschisis frequently accompanies
cortical strokes because cortico-pontine-cerebellar linkages
normally provide stimulation to the cerebellum contralat
eral to the indicated cortex. Reduced perfusion to the
contralateral cerebellum is a common secondary phenom
enon following cerebral ischemia, which continues even
during luxury perfusion (36,37).

SPECT rCBF imaging may also be useful in delineation
of stroke subtypes. Since evolving therapeutic regimens
are subtype-specific, it is increasingly important to provide
rapid, accurate classification of the acute episodes. For
example, case selection for endarterectomy may depend
on the identification of patients with ongoing low-flow
states even in the presence ofasymptomatic carotid disease

FIGURE 3. Mid-levelandinferiorlevel(containingcerebellum)
SPECT brain blood flow images in a stroke subject demonstrate
a left hemispheric flow deficit on the day of the ictus that partially
resolvesby 24 hr. Apparentresolutionof the deficitat Day 7
representsluxuryperfUSiOnto an infarctedand metabolically
abnormal zone. By Day 33, the flow disturbance retums to a
level similar to that seen initially. Note that crossed cerebellar
diaschisisispresent and does not resolveduringluxuryperfusion.

(28,30). In acute infarctions, distinguishing between the
appropriateness of anticoagulation or thrombolytic ther
apy may depend on the demonstration of the physiologic
significance of an angiographically demonstrable lesion.
The use ofcalcium channel blockers may only be effective
prior to induced or spontaneous reperfusion.

The measurement of cerebrovascular reserve is partic
ularly well suited to rCBF imaging. Two indices of reserve
can be obtained. The rCBF-to-rCBV (flow/volume) ratio
may be related to the regional oxygen extraction ratio and
provides an indirect measure of perfusion pressure (38â€”
40). Cerebrovascular reserve can also be measured follow
ing the vasodilatory response to C02, or acetazolamide, a
carbonic anhydrase inhibitor and potent cerebral vasodi
lator (41â€”43). Measurements of cerebrovascular reserve
are useful in assessing either the need for acute interven
tions following stroke or the risk status for secondary
strokes. A recently developed dual-isotope imaging tech
nique (24) facilitates the measurement of cerebrovascular
reserveby SPECT (25) (Fig. 4).

Several recent studies also suggest a prognostic role for
SPECT in stroke. A direct relationship between rCBF and
clinical outcome has both been supported (44â€”48) and
refuted (49-51). Improved correlation between rCBF and
outcome has been achieved with measurement of the
volume of the rCBF defect relative to the volume of
structural defect (52) or of the volume of the flow lesion
alone (28,53â€”55).One ofthese studies (55) showed a 92%
predictive power of ICBF SPECT obtained within 6 hr of
the ictus for poor neurologic outcome.

Distinctions between [â€˜231]IMPand 99mTc@HMPAO
have been reported. IMP may provide more contrast for
areas of ischemia than HMPAO, particularly in the sub
acute phase (8,56). Reduced lesion contrast with HMPAO

FIGURE 2. Abnormalperfusionin the distributionof the right
middle cerebral artery in an acute stroke patient 6 hr after onset
of symptoms. A concurrent CT scan was normal. A repeat CT
study was abnormal three days after ictus.
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may be a consequence of flow-dependent backdiffusion
(57) andhigh initial bloodlevels(58). A comparisonof
early and delayed (4 hr postinjection) IMP uptake has been
proposed as an indicator of tissue viability (47), although
this is not well established (54).

Transient Ischemic Attacks
Determination of the cause of a TIA (thrombotic, em

bolic or hemodynamic) has substantial impact on patient
management. Structural imaging contributes little. For
example, Crow and Guinto found that 82/100 TIA pa
tients had normal CT scans; the 12 patients with abnormal
scans showed only the nonspecific finding ofatrophy (59).
SPECT rCBF imaging may clarify the mechanism of is
chemia (60) and may identify patients at the highest risk
for subsequent infarction in the first week following TIA
(61). The value of SPECT imaging in TIA patients may
be increased by assessing the status of vasodilatory reserve
and the response to medical or surgical intervention. Such
assessments are important since as many as 60% of TIA
patients will go on to have a completed stroke (62). The
sensitivity of rCBF imaging in TIA declines with time,
from 60% in the first 24 hr (63) to less than 40% 1 wk
after the event (34). This sensitivity may be enhanced both
early and late after the ischemic event by examination of
cerebrovascular reserve with acetazolamide (61,64).

Subarachnoid Hemorrhage
Subarachnoid hemorrhage accounts for approximately

one-halfofall intracranial hemorrhagic strokes. Post-hem
orrhage neurologic deficits that appear within 2 wk are
most commonly a consequence of vasospasm (65). Con
sequent delayed cerebral ischemia and possible infarction
make vasospasm an equally important factor with recur
rent hemorrhage in the morbidity or mortality of subarach
noid hemorrhage. Management of subarachnoid hemor
rhage patients requires the differentiation of vasospasm
from edema, elevated intracranial pressure, hydrocephalus
and electrolyte aberrations (66). Vasospasm is accom
panied by decreased rCBF, decreased cerebral metabolism,
increased neurologic deficit and increased cerebral blood
volume (67,68). Davis et al. found a correlation between
regional hypoperfusion evidenced by HMPAO SPECT and
the presence and severity of a delayed neurologic deficit
in subarachnoid hemorrhage patients (69). While the pres
ence of vasospasm can be documented by transcranial
Doppler (70) or angiography, these studies only indirectly
relate to the risk for cerebral infarction. Regional CBF or
rCBF/rCBV imaging provide a more direct measure of the
hemodynamic significance ofobserved vasospasm. By pro
viding early evidence of cerebral ischemia, SPECT may
help to differentiate vasospasm from other causes of neu
rologic deterioration following subarachnoid hemorrhage
and thus enhance delivery of therapeutic measures de
signed to reduce its effects.

Arteriovenous Malformation
Patients with arteriovenous malformation are at risk for

three major complications: (1) intracerebral or intraven
tricular bleeding, which may occur at any time and may
be fatal [the incidence of spontaneous hemorrhage ranges
from 35% to 60% (71)]; (2) seizures; and (3) intracerebral
â€œsteal,â€•in which relative ischemia is produced in parts of
the brain either adjacent to or remote from the arteriove
nous malformation due to high arterial-to-venous shunting
through the arteriovenous malformation (72). Xenon-l33
SPECT studies have demonstrated a high incidence of
steal (72-75). Documentation of steal has provided a
motivation for staging of surgical resection and for pre
surgical treatment with arterial embolization (74, 75). The
arteriovenous malformation itself appears as a high-flow
region on â€˜33XeSPECT, but as an area of reduced tracer
uptake with IMP or HMPAO since the vascular malfor
mation does not retain these tracers. Devous, Batjer and
colleagues found that the examination of cerebrovascular
reserve with acetazolamide in arteriovenous malformation
patients was prognostic for postoperative outcome (76,
77).

Future Prospects
Even though SPECT rCBF measures provide sensitive

early detection ofcerebrai ischemia, and may provide both
diagnostic and prognostic information in stroke patients,
no significant change in the frequency of referral from
neurologists for SPECT has been observed. Brass and
Ratner have identified several relevant factors (30). First,
the complete implementation of rCBF SPECT imaging in
the evaluation ofpatients with cerebrovascular disease will
require a far more thorough interdigitization ofthe nuclear
medicine physician and the neurologist in evaluating, im
proving and implementing this potentially valuable tech
nique. Second, purely descriptive studies, often performed
in isolation from a clear statement of relevant clinical
problems, contribute little to understanding the role of
SPECT rCBF measurements in patient management or
enhancing the referring physician's perception of the use
fulness of this technique. Prospective studies should be
designed to answer focused questions relating to issues of
clinical management. Finally, thorough evaluation of
â€œbrainstress tests,â€•specifically the measurement of vaso
dilatory reserve, is important since current clinical or
structural imaging measures are limited in their ability to
determine risk status. An increased recognition of the
importance of hemodynamic measures relative to struc
tural assessments (78) places new emphasis on the evolu
tion of activation or intervention studies (42) which en
hance risk assessment. The current role for rCBF SPECT
imaging in cerebrovascular disease can only be recognized
and expanded through careful cooperative efforts between
the nuclear medicine and neurological communities.
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FIGURE4. Three-dimensionalsurface-renderedimages
showing a right frontopanetal resting rCBF deficit with expansion
following vasodilation with Diamox in a stroke patient. The differ
ence in affected areas in the resting and vasodilated studies
representstheareaof failedvasodilatoryreserve.

DEMENTIA

Alzheimer'sDisease
Approximately halfofthe patients presenting with early

clinical symptoms of dementia cannot be accurately diag
nosed by clinical criteria. Early diagnosis is important
because dementia-like symptoms may mask reversible
conditions, such as depression, or treatable diseases, such
as vascular dementia. Furthermore, early diagnosis of Alz
heimer's disease can avoid the financial and emotional
drain that often occurs if the time to final diagnosis is
needlessly delayed.

Brain perfusion SPECT is useful in the diagnostic eval
uation of patients with memory and cognitive abnormali
ties (79). Initial clinical studies comparing patients with
Alzheimer's disease and normal control subjects (80â€”87)
or patients with multi-infarct dementia (88â€”91)found that
SPECT is highly accurate. In severely impaired patients,
sensitivity is 95% or greater ( 79,83). The sensitivity of
SPECT in the classification of mildly impaired patients is
also high, with rates reported between 80% and 87% (79,
86,92).

The predominant finding ofbilateral posterior temporal
and parietal perfusion defects in these patients is highly
predictive of Alzheimer's disease (Fig. 5). In a prospective
study of over 100 patients with memory loss, bilateral
posterior association cortex defects were detected with
99mTcHMPAO SPECT in 65% of the patients with Alz
heimer's disease (93). This pattern, with or without addi
tional association cortex defects, has a predictive value of
over 80% for the diagnosis of Alzheimer's disease.
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FIGURE 5. Technetium-99m-HMPAOSPECTusingthe high
resolutionASPECTsystem.Bilateraltemporoparietalperfusion
defects ina patient with Alzheimer's disease. Axial(A)and sagittal
(B)planes.

While bilateral posterior cortical defects are highly pre
dictive in Alzheimer's disease, this scintigraphic pattern
has also been described in patients with vascular dementia
(91), Parkinson's disease (94,95), mitochondrial ence
phalomyopathy (96), hypoglycemia (97) and carbon mon
oxide poisoning (97). The scintigraphic pattern of Parkin
son's disease with dementia cannot be distinguished from
that of Alzheimer's disease by visual assessment alone.
While Parkinson's disease patients with dementia have a
variety of scintigraphic patterns, the most common in
volves the temporoparietal cortex (94,95).

The reduced tracer uptake in the posterior association
cortex in patients with Alzheimer's disease is probably due
to multiple factors, including reduced rCBF, decreased
cortical thickness in the temporoparietal cortex (98) and
a reduced number of neurons in the affected areas (99).
Most of the reduced tracer activity is due to reduced
regional blood flow, however, particularly in early disease
(100). In any case, the combined effect of flow reduction
and atrophy serve to increase the diagnostic sensitivity of
the test, and atrophy corrections are probably not war
ranted for routine applications.

Patients with Alzheimer's disease can present with other



scintigraphic patterns, although they are less frequent than
bilateral posterior cortical defects (93). Unilateral tempo
roparietal defects are not predictive either for or against
Alzheimer's disease. With 99mTc@HMPAO,unilateral pos
tenor defects are seen in 15%â€”20%of patients with Alz
heimer's disease (93), significantly more than with [1231]
IMP (80). Consequently, vascular dementia involving the
posterior branches of the middle cerebral artery may re
semble Alzheimer's disease when the latter presents as a
unilateral pattern.

Some investigators recognize dementia of the frontal
type as an entity separate from Alzheimer's disease (92),
with the former presenting with personality and behavioral
changes and with less severe memory deficits. These in
vestigators find that the two dementias can be distin
guished scintigraphically, with bilateral frontal or fronto
temporal deficits characteristic of frontal lobe dementia.
Frontal dementia is considered by many to be a subset of
Alzheimer's disease. In either case, bilateral frontal deficits
by themselves are not diagnostic and are seen in patients
with schizophrenia, depression, progressive supranuclear
palsy (usually with basal ganglia involvement) and Pick's
disease as well as in Alzheimer's disease and/or frontal
lobe dementia.

The probability of Alzheimer's disease with normal
perfusion or with perfusion defects outside the temporo
parietal cortex is low. The predictive value of a normal
scan depends on the clinical setting. When patients are
well screened before referral for SPECT, few of them will
be without central nervous system disease. In our experi
ence, when patients are screened by a memory disorder
clinic, the negative predictive value of a normal study is
about 80%. The predictive value will increase as more
normal patients are included in the population.

VascularDementia
Vascular dementia is related to a number of distinct

underlying diseases (101). Binswanger's disease or subcor
tical atherosclerotic encephalopathy involves the microcir
culation, presents as white matter disease and is attributed
to atherosclerosis of penetrating cerebral arteries. Multi
infarct dementia involves the large vessels and results from
large cerebral infarcts. A third disease, a form of multi
infarct dementia but not usually involving large-vessel
occlusion, results from multiple small, deep, subcortical
lacunar and pericapsular infarctions. Mixed forms of these
three vascular diseases often occur. Technetium-99m-
HMPAO SPECT appears reasonably accurate for distin
guishing vascular dementia from Alzheimer's disease when
bilateral temporoparietal defects are present (82,83). The
scintigraphic pattern of multi-infarct dementia is usually
described as multiple asymmetrical perfusion defects, often
involving the primary cortex and deep structures. Vascular
dementias which involve the subcortical structure are as
sociated with patchy or diffuse patterns of blood flow
reduction.

AIDS Dementia Complex
The early clinical signs of AIDS dementia complex

(ADC) or HIV encephalopathy are often subtle and may
be indistinguishable from depression, psychosis or focal
neurologic disease. Since treatment such as zidovudine
(AZT) can improve cognitive function in ADC, its early
detection is important. Computed tomography (CT) and
magnetic resonance imaging (MRI) play a role in diagnos
ing focal neurologic disease, such as infection or tumor,
but are nonspecific for ADC. Brain perfusion SPECT is
highly sensitive for the detection ofADC (102â€”104).Early
disease is easily separated from normal subjects and non
HIV psychoses (105â€”106).The perfusion pattern is usually
described as multifocal or patchy cortical and subcortical
hypoperfusion. With high-resolution SPECT, we found a
high incidence of cortical defects in ADC, which are most
frequent in the frontal, temporal and parietal lobes (107)
(Fig. 6). Background activity is high, involving more than
halfofthe patients in our series. Basal ganglia involvement
is also frequent. A high number of patients have focal
areas of increased activity as well. The perfusion pattern
improves with ADC therapy (105). Brain perfusion
SPECT should be applied cautiously in patients with sus
pected ADC because an identical brain perfusion pattern
is seen among chronic cocaine polydrug users (107). It is
also not clear whether the perfusion pattern is limited to
ADC or may be seen with nonspecific changes such as
white matter pallor, astrocytic proliferation and mononu
clear infiltration which are present in almost all AIDS
patients. It may not matter since SPECT imaging may
prove to be an indicator ofthe severity ofbrain dysfunction
and therefore may be quite useful in planning therapy and
in evaluating its effectiveness.

EPILEPSY
Functional brain imaging with either SPECT or PET is

now a well-established technique to localize the epileptic
focus in patients with refractory complex partial seizures
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in a patient with AIDSdementia complex.



(108). From 30% to 60% ofpatients with complex partial
seizures ultimately become refractory to medical treatment
and may be referred for surgical removal of a discrete
seizure focus. Since most complex partial seizures arise
from temporal lobe foci (109), temporal lobectomy is the
appropriate surgical therapy. Successful excision of well
localized foci leads to elimination of seizures or signifi
cantly improved pharmacologic control in 80% of surgical
patients (110). Traditionally, localization has been per
formed with scalp, cortical or depth EEG. However, scalp
EEG may be misleading in the localization of the primary
site of seizure onset because it has inherently low spatial
resolution and is fundamentally dependent upon primarily
cortical surface effects. Surface electrocorticography is also
limited by the area of brain sampled and its sensitivity to
and localization of deep-lying generators. Depth EEG can
monitor deeper structures but samples only limited regions
ofbrain. Both corticography and depth EEG are extremely
invasive and present a surgical risk. Ward has reported
that in the United States there are 50,000 patients with
medically refractory complex partial seizures possibly ben
efiting from temporal lobectomy (11 1). Of these, only
approximately 500 per year receive surgery, partially due
to the difficulty of adequate focus localization.

Interictal SPECT rCBF imaging is the most convenient
and cost-effective technique for the localization of a tem
poral lobe focus in adult patients with medically refractory
complex partial seizures. Studies to date would suggest
that, when an area of focal temporal lobe hypoperfusion
is observed, the need for further studies is minimal (partic
ularly if scalp EEG is concordant).

Partial Complex Seizures
Interictal Studies. Interictal PET studies of glucose me

tabolism have consistently demonstrated that approxi
mately 70% of patients with complex partial seizures have
discrete foci of hypometabolism and that these sites may
occur in more than one brain region in the same patient
(112â€”121).There is a strong correlation between the area
of hypometabolism and the site of electrophysiologic ab
normality determined by a combination of electrophysio
logic data.

In rCBF studies employing â€˜33XeSPECT, only 50%
demonstrate interictal hypoperfusion (122-124). Most
often, hypoperfusion is found at the site of the EEG
abnormality, but flow deficits are also seen in other remote
areas. No specific type of EEG abnormality is associated
with reduced rCBF; equal flow reductions were seen in the
presence of focal spiking alone, focal spikes and slowing
and focal slowing alone (125). The first high-resolution
interictal scans with SPECT employed [â€˜231]IMPand
HIPDM (126â€”129).More recently, interictal scans have
been obtained with @mTc@HMPAOby a variety of inves
tigators (130â€”134).Interictal SPECT findings with the
iodinated amines and @mTc@HMPAOshow a frequency of
abnormal interictal hypoperfusion (70%â€”75%) similar to
PET studies and excellent correlation with EEG localiza

TLE Interictal HypprIo@

FIGURE7. Interictalrighttemporallobehypoperfusionin a
patient with temporal lobe epilepsy (TLE)on transverse and
coronalslicesusing[123l]IMP.The asymmetryof temporallobe
perfusion is typical of the interictal state in such patients.

tion (Fig. 7). Rowe et al. (133) studied 32 patients with
HMPAO, 30 of whom had temporal lobe localization by
ictal EEG; 18 of 30 patients had focal hypoperfusion at
the site ofthe EEG focus interictally. Devous et al. studied
38patientswitheitherIMPorHMPAOinterictally,and
in those patients with EEG-identified foci, approximately
75%hadinterictalhypoperfusion(134).

Ictal Studies. HIPDM and IMP can be effectively used
for ictal studies as long as careful EEG monitoring is used
to document seizure onset (Fig. 8). In the postictal phase,
cerebral blood flow decouples from glucose metabolism;
rCBF remains elevated (127,135), while glucose metabo

FIGURE8. Hyperperfusionoftherighttemporallobeisshown
during an ictus in a patient with temporal lobe epilepsy (TLE).
This is the same patient shown in the interictal state in Figure 7.
Note the reversal in asymmetry documenting seizure localization
to the right temporal lobe.
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lism declines rapidly (118). In addition, secondary gener
alization may occur. Ictal studies with iodinated agents
have been more successfulin identifying seizurefoci than
interictal studies (126,128,129,134). Unfortunately, true
ictal studieswith HMPAO are nearly impossibleto obtain
becausethis compound is unstable in vitro, leading to
delays between seizure onset and injection of 5â€”20mm.
In the study by Rowe et a!., 22/30 patients with focal EEG
findings showed increased postictal HMPAO uptake at the
site of the EEG focus (133). These data suggest that early
postictal studies (within 5 mm) may be as effective as true
ictal injections.

In a recent review, the combination ofall EEG data was
localizing in 71 % of the patients (108). By contrast, func
tional imaging (SPECT or PET) was localizing in 59% of
the interictal studies and 65% of ictal studies. These data
suggest that ofthe patients with EEG-localized seizure foci,
79% were equally well localized by functional brain im
aging. It is interesting to note that the localizing power of
interictal functional imaging is not substantially different
between SPECT and PET, nor is it significantly different
between IMP, HIPDM and HMPAO.

PrimaryGeneralizedSeizures
There are few data concerning functional abnormalities

in generalized seizures (12,136â€”138). These results are
consistent with the failure of surface or depth EEG or
structural imaging modalities such as CT and MRI to
definea specificanatomicregionof seizureoriginin these
patients (139). Leroy et al. did not detect quantitative
asymmetries in rCBF (137) and Theodore et al. found no
significant differences in glucose metabolic rates (136).

FrontalLobe Seizures
In recent years, there has been increased interest in

partial seizures originating from areas other than the tem
poral lobe (140). Frontal lobe seizures have been difficult
to localize using standard EEG technique, and stereotactic
depth electrodes have not proven to be as beneficial for
localizing the site of the seizure origin as in temporal lobe
seizures. The results ofsurgical treatment of extratemporal
partial seizures has been disappointing in comparison to
the results of temporal lobe surgery. Functional imaging
holds promise for localization of the site of extratemporal
seizures, but limited data currently exist. It appears that
60%â€”70%of subjects with proven extratemporal seizures
demonstrate hypometabolism interictally (141). These hy
pometabolic areas appear widespread and are less localized
than in temporal lobe seizures.

Structural,Clinicaland CognitiveCorrelations
Patients with partial and secondarily generalized sei

zures are much more likely to have structural abnormali
ties observable on CT or MRI than patients with primary
generalized tonic-clonic seizures or absence attacks (142).
It is not always true that abnormalities detected on struc
tural imaging studies are correlated with the seizure focus
defined by clinical or EEG criteria or, for that matter, with

functional brain imaging. By far, the most common path
ologic finding is mesial temporal sclerosis, which is thought
to be the consequence of an older lesion now manifested
as a gliotic scar (143). A review ofSPECT and PET studies
demonstratesa 34% incidenceof focalMRI abnormalities
and a 17% incidence on CT. This is contrasted to a 71%
incidence of focal EEG changes and a 59% incidence of
focal abnormalities on interictal functional imaging meas
ures (108). A few studies demonstrate a close relationship
between the severity of interictal ICBF reductions and
eitherclinicalsymptomatologyor cognitiveimpairment
(144). Homan et al. compared SPECT and neuropsycho
logical assessments in 50 patients with partial seizures
(145). Even though rCBF and neuropsychological deficits

were relatively mild in many patients, at least one low
flow region matched an area of neuropsychologically im
paired function in 43 ofSO patients. There was a significant
correlation between areas of visually identified hypoper
fusion and neuropsychological impairment (p < 0.001).
Stepwise discriminate function analyses revealed predic
tive relationships between deficits on specific neuropsy
chological tests and visually identified hypoperfusion, par
ticularly in the left and right temporal regions. Similar
data were reported by Berent et al. (146).

Pediatric Studies
Seizures in children may result from a variety of under

lying pathologies. There may be no relationship between
clinical symptoms and either electrographic or radio
graphic findings, and the patients often have unpredictable
courses. Functional brain imaging could be useful in un
derstanding clinical pleomorphisms associated with partic
ular diseases, or as a device for subcategorizations useful
in predicting progression. Unfortunately, there are only
seven published studies concerning functional brain im
aging in pediatric epilepsy, excluding case reports and
abstracts. Six of these involve PET (147â€”152)and one is
an IMP SPECT study (153). The only clear conclusion
that may be drawn is that more work needs to be done. It
is likely, given the adult experience and the limited pedi
atric results, that functional brain imaging abnormalities
will precede structural signs in infants and will likely
provide an insight into observed seizure activity. The
limited studies available for review suggest of a prognostic
as well as a diagnostic role for functional brain imaging in
pediatric patients, but such a role is not yet established.

PRIMARY BRAIN TUMORS

Malignant gliomas carry a dismal prognosis due to their
aggressive biological behavior. Newer treatment modali
ties, however, including radiosurgery and brachytherapy,
have resulted in increased local control and survival rates
(154). With aggressive treatment, an increasing number of
patients will present with symptoms and signs that may
be secondary to recurrent tumor or to radiation changes
alone. Establishing the cause of clinical deterioration in
malignant glioma patients treated with high dose radiation
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is necessary for determining appropriate management.
Progressive radiation necrosis requires surgical debulking,
while solid tumor recurrence may require adjuvant ther
apy. CT and MRI are nonspecific and cannot distinguish
radiation necrosis from treated tumor (155,156). Even
CT-guided biopsy may be unreliable. While PET has been
useful to assess tumor viability and to differentiate recur
rent glioma from radiation change (15 7), it is not readily
available in most medical centers.

Thallium-20l localizes in primary and metastatic brain
tumors (158). Its mechanism of uptake is unknown, but
may involve transmembrane transport into viable tumor
cells (159). When 201Tl tumor uptake was compared to
activity in the contralateral hemisphere, high-grade
gliomas were differentiated from low-grade lesions (160,
161). Since this distinction has both prognostic and ther
apeutic implications, preoperative 201TlSPECT may aid
in the timing of biopsy or surgery.

Combined 2oI'fl/99mTcHMPAO SPECT is useful for
discriminating radiation changes from tumor necrosis as
the cause of clinical deterioration in patients with malig
nant glioma who have also been treated with high dose
radiation. While 20Tl-chloride scintigraphy is highly sen
sitive for identifying recurrent tumors (162), in our expe
rience it is insufficiently specific to be clinically useful by
itself (163). When combined with 99mTcHMPAO how
ever, three patterns of uptake can be identified. High
thallium activity (a tumor-to-scalp ratio of greater than
3.5) is highly predictive of solid tumor recurrence in these
patients (Fig. 9). When the thallium activity ratio is mod
erateor low (lessthan 3.5) and 99mTcuptakeis alsolow
(less than 50% ofcerebellar activity), the likelihood of solid
tumor recurrence is low. In those patients with moderate
thallium uptake and high perfusion, SPECT is not predic
tive of either tumor or reactive tissue. This method may
also prove useful for identifying the appropriate target for
stereotactic biopsy excision or ablation once the SPECT
and structural image are accurately merged (25).

PSYCHIATRIC DISEASE

SPECT applications in psychiatric disorders are not yet
clinically useful. We have not yet discovered diagnostic or
prognostic functional abnormalities in the major psychi
atric diseases. However, SPECT may be of value in iden
tifying unsuspected functional lesions. SPECT may also
be useful to rule out organic complications not evident on
other diagnostic tests. Promising research into mood dis
orders, schizophrenia and anxiety disorders suggests that
diagnostic and prognostic roles for SPECT may soon
emerge.

Depression
Twenty studies in the last 10 years found alterations in

cerebralperfusionor metabolismin depressedsubjects
(164-183). Others have reported on effects of medication,
electroconvulsive therapy and cognitive tasking in such
patients (184â€”188).Unfortunately, findings are inconsist
ent. There are numerous reasons, including error due to
small samples, variations in age and gender distribution,
diagnostic heterogeneity, study conditions, severity of
depression, and medication status. However, there are
consistent indications ofreduced global blood flow (gCBF)
or glucose metabolism (gCGM), particularly in patients
with major depressive disorder (MDD), and possible re
ductions in the basal ganglia in both bipolar depressed
phase (BP) and MDD samples. There are also suggestions
ofalterations in the anterior-to-posterior gradient. Studies
have reported a relationship between cerebral biochemistry
and symptom severity. Baxter recently suggested an emerg
ing consensus for involvement oflateral prefrontal cortex,
noting decreased rCGM in lateral prefrontal cortex in
depression and elevated rCGM in orbital cortex in obses
sive-compulsive disorder (OCD) (189). While some con
ceptual consensus is developing, firm conclusions would
be premature. For example, striatal abnormalities, while
reportedfor both disorders,have not beenconsistently
identified.

One explanation for the diversity of findings seen in the
existing literature is that no single region of the brain
distinguishes depressed individuals from controls or is
consistently related over time to the symptomatology ob
served in depression. For example, Sackeim et al. found
that an interacting network of regions explained the top
ographic distinctions between their BP patients and nor
mal controls and that these regional effects existed sepa
rately from global alterations (181 ). Also, Devous et al.
recently compared â€˜33XeSPECT in rCBF in 48 sympto
matic MDD patients (13 nonendogenous, 24 endogenous
and 11 psychotic) to 48 age- and gender-matched normal
controls (188). Results revealed a significant age-by-de
pressive subtype interaction for gCBF and for rCBF ratios.
Age effects on rCBF differed not only by region but also
among the three diagnostic subtypes. These findings of age
effects among depressive subgroups are only one indication
ofthe heterogenous nature ofthe population. For example,
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FIGURE 9. Thallium-201SPECT (axial planes).Horseshoe
shapedregionof high20111uptakein a patientwitha recurrent
glioblastoma in the right temporal lobe following surgery and
brachytherapy.
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the notion of global reductions in cerebral blood flow in
depression has been both supported and opposed. Such a
diversity of results may be explained by examining the
endogenous/nonendogenous and psychotic/nonpsychotic
patient mixtures in each study.

ObsessiveCompulsiveDisorder
PET studies have revealed abnormalities in glucose met

abolic rates in obsessive compulsive disorder (OCD) pa
tients, but the implicated areas vary from study to study.
Baxter et al. have found increased metabolism in the
caudate nuclei, orbital gyri, hemispheres and orbital gyrus
to-hemisphere ratio bilaterally ( 190, 191 ). Nordahl et al.
did not report global, hemispheric or caudate abnormali
ties, but did find increased orbital frontal metabolism
bilaterally and decreased right parietal and left parieto
occipital metabolism in OCD as compared to normals
(192). Another conflicting study reports increased metab
olism in the right prefrontal cortex and in the left anterior
cingulate (193). A 33Xe SPECT study in 14 OCD patients
found significantly lower mean blood flow, but no regional
differences between OCD and matched normals (194).
Similarly, Nordahl et al. found lower glucose metabolic
rates in OCD than in normal controls in most brain
regions.

Schizophrenia
Recent reviews suggest that SPECT and PET, as well as

the nonimaging â€˜33Xeinhalation probe technique, provide
evidencefor frontallobedysfunctionin certainsubtypes
ofschizophrenia (195,196). While hypofrontality has been
reportedfrequently(197â€”200),not all investigatorshave
observed it (201â€”203). Inconsistent findings have been
attributed to variability in study populations with regard
to age, duration of disease, clinical state, subtyping (espe
cially along the paranoid/nonparanoid dimension) and
medication status (204-208). Frontal lobe dysfunction
may be more evident during the performance of cognitive
tasks designed for frontal lobe activation (197,199,207,
209â€”213). Hypofrontality also appears to be associated
with the negative symptoms of schizophrenia (195,199).
Temporal lobe abnormalities have also been reported (199,
209,214). The combination ofboth anterior and posterior
functional alterations is often expressed as an abnormality
in the anterior/posterior gradient. Buchsbaum et al. and
others have also reported subcortical abnormalities, partic
ularly on the left side (198,203,21 7â€”221).Generalized left
hemispheric dysfunction (laterality) has also been reported
(195,203,204,222).

HEAD INJURY

Traumatic brain injury has an overall incidence similar
to that of stroke, with a particularly high mortality in the
first 48 hr post-trauma (223). Proper management of these
patients requires an accurate assessment of underlying
brain function and, consequently, emission computed to
mography has been investigated as a possible monitor.

Technetium-99m-HMPAO SPECT has been shown to be
more sensitive than CT in detecting abnormalities in pa
tients with a history oftraumatic brain injury, particularly
in the minor head injury group (223). Thus, 42 patients
(80%)showedrCBFdeficitswithSPECTcomparedwith
29 patients (55%) with CT. In addition to its higher
sensitivity, SPECT reflects changes in perfusion at an
earlier time than CT (224). In a preliminary study, patients
with large lesions, multiple defects and lesions involving
the brain stem appeared to have a worse prognosis than
those patients with nonfocal, small lesions, particularly if
they involved frontal or occipital lobes. SPECT may also
predict the degree ofpermanent damage and those patients
who will develop post-traumatic headache (225). Roper et
al. has shown that with HMPAO SPECT some patients
with traumatic brain injury may have cerebral blood flow
equal to that of surrounding brain (226). This informa
tion may be of prognostic value or may simply indicate
luxury perfusion with disassociation between metabolism
and flow. At this point, the number of studies of SPECT
and traumatic brain injury are small and involve only a
few patients, but this application appears promising.

NEURORECEPTOR IMAGING
Neuroreceptor imaging now plays a very limited role in

clinical practice. Early clinical trials and the much larger
PET experience suggest that useful applications will
emerge and that a wide spectrum of radioligands will
become available. SPECT ligands have been developed for
muscarinic cholinergic receptors (â€˜231-3-quinuclidinyl-4-
iodobenzilate, IQNB), the dopamine D-2 receptors ([1231]
iodobenzamide, IBZM), the serotonin-2 receptor ([123!]
iodoketanserin) and the benzodiazepine receptor (â€˜23I-Ro
16-0154m, lomazenil).

The dopaminergic system plays an important role in
the coordination ofnormal brain function and is a primary
action site for neuroleptic drugs for treating schizophrenia
and Parkinson's disease. Furthermore, a number of central
nervous system diseases, including schizophrenia, tardive
dyskinesia, Parkinson's disease and Huntington's chorea,
are associated with changes in dopamine receptor density
in the brain. Iodine-l23-IBZM has been imaged in humans
and has a distribution similar to that of positron-labeled
D-2 receptor antagonists with localization primarily in the
basal ganglia (227).

lomazenil is a specific ligand for benzodiazepine recep
tors in the human brain (228). The highest concentration
ofthis receptor antagonist is in the medial occipital cortex.
lomazenil distribution is altered in partial epilepsy and, in
early qualitative imaging studies, appears to be abnormal
even when perfusion studies are normal.

Iodine-l23-IQNB studies of muscarinic acetylcholine
receptor binding in patients with Alzheimer's disease result
in images which are similar or less abnormal than images
of perfusion in the same patients with Alzheimer's disease
(229,230). Studies of the muscarinic acetylcholine system
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are currently limited by nonspecific ligands such as IQNB,
which label most or all of the muscarinic receptor sites
and cannot differentiate presynaptic from postsynaptic
binding.

A number of problems will have to be overcome if
SPECT imaging is to play an important role in the assess
ment ofneurotransmitter function. High spatial resolution
will be necessary to quantify absolute tracer concentration.
While receptor affinity can be determined from relative
measurements ofradioactive concentrations (231), careful
modeling will be necessary to account for radiotracer
kinetics and the effect ofblood flow on tracer distribution.
It is possible, however, that scintigraphic imaging alone
may provide enough information to be diagnostically use
ful, as it has been with perfusion imaging. Furthermore,
many neurotransmitters bind to a family of receptors.
Unless ligands are developed for specific receptor sites, the
full value of this method will not be realized.

CONCLUSION

Substantial literature has emerged over the past decade
charting potentially powerful applications of functional
brain SPECT in cerebrovascular disease, dementia, epi
lepsy, cancer and psychiatric disease. Nevertheless, its full

TABLE I
WidelyAcceptedUsesofBrainSPECT

Alzheimer'sdisease
Acutestroke
Transientischemicattacks
Epilepsy
Recurrent primarytumor
Headtrauma

TABLE 2
Potential Applicationsof Brain SPECT
Cerebrovasculardisease

Delineation of stroke subtypes
Cerebrovascularreserve
Strokeprognosis
Strokerisk
Subarachnoidhemorrhageprognosis

Dementia
AIDS dementia complex
Huntington'sdisease
Dementiaseverity, prognosis and treatment

Psychiatricdisease
Schizophrenia
Depression
Anxietydisorders

Parkinson's disease
Substance abuse
CNS involvementin systemic disease

Chronicfatiguesyndrome
Lupus
Others

Pharmacologicand cognitivechallenge tests

potential as a diagnostic tool will emerge only when clearly
defined applications demonstrate scintigraphic findings
which facilitate critical management decisions. Such ap
plications are now beginning to emerge (Table 1) and
more will become evident as well-designed clinical trials
of efficacy and patient outcome establish its utility (Table
2). Functional tests such as perfusion SPECT require care

ful and imaginative investigations to determine the proper
diagnostic role of the physiological information that they
provide as well as close cooperation between nuclear med
icine physicians and their clinical colleagues to assure that
the most relevant clinical questions are being answered.
Properly approached, functional SPECT provides a unique
window to explore the hemodynamic and biochemical
consequences of diseases that affect the brain.
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