
DeDicateD

ttcN-3 is basically a programming language with dedicated test features:

 • It has its own data types or it can use external data types defined

in ASN.1.

 • It embeds a number of basic services such as timers, messages,

parallel testing.

 • The concept of templates allows to match very complex information

 in a single line.

 • It embeds the concept of verdict and defines rules to aggregate

verdicts coming from different test cases.

 Some test equipments support TTCN-3 natively including a TTCN-3 compiler

and the adapters to the testing equipment interfaces.

StaNDarD

 PragmaDev real time Developer Studio implements itU-t standard
testing language ttcN-3 (Testing and Test Control Notation). TTCN-3 has

been designed to test all types of systems whether they are event based

(asynchronous) or function based (synchronous). it has been successfully
used the last 15 years in the industry for testing and certification in various

domains such as Telecommunication, Automotive, Railway, and Finance.

as well as the implementation

Generated code
(Design)

Model
(Specification)

co-simulation

co-generation

Generated code
(Unit & Integration)

Test suite
(Validation)

• Model driven TesTing

• ConTinuous inTegraTion

• iMpleMenTaTion independenT

teSt SUiteS

• legible TesT Cases

• graphiCal exeCuTion TraCes

A simple test case

Model driven TesTing

pragmadev has setup a technical partnership with verimag laboratory

in Grenoble that has a well recognized expertise in model checking

technologies. Integration of that model checking technology allows to

automatically generate a set of test cases based on objectives defined

by rules graphically described in observers. Once the objective has been

reached, the generated test case includes: the data types, the template

definitions, the scenario.

18, rue des Tournelles 75004 Paris France
Tel : +33 1 42 74 15 38 • Fax : +33 1 42 74 15 58
http://www.pragmadev.com
mail : info@pragmadev.com

inTegraTed

PragmaDev Real Time Developer Studio offers three levels of modeling

from informal, semi-formal, to formal. Formal modeling allows to verify the

dynamic behavior of the model with the built-in simulator without generating

any code. On the test side, the same simulation feature is available so that

the simulated model can be tested against a simulated test suite.

Once a high level model is verified, code can be generated for implementation

on a real target. Once again, it is possible to generated code out of the test

suite to be executed on a real tester and test the implementation of the system.

PragmaDev code generator provides integration for the most popular real
time operating systems and the model debugger has interface with several

debuggers and cross-debuggers in order to graphically debug in the model.

Integration features and debugger interfaces are available for both the code

generated out of the model as well as from the test suite. Last but not least

test execution can be graphically traced with pragmadev MsC Tracer.

Execution trace of a test case

Easy integration of the generated code with the System Under Test

Reference Model

generates

Conformance
Test

absTraCT

 TTCN-3 is a high level testing language that can be used to test a high
level model of your system. As PragmaDev Real Time Developer Studio

supports different modeling technologies such as UML, SDL-RT, and SDL,

the implementation of ttcN-3 in our tool allows to test the model
very early in the development process. In that case the tool will generate

the interface between the System Under Test and the Test Suites.

 TTCN-3 is also a very detailed testing language that can test a software

or even a hardware implementation of a system. TTCN-3 defines the concept

of Test System Interface in order to adapt the test suite to any kind of system.

C
ré

at
io

n
: L

e
so

ur
ire

 e
n

Pr
im

e

TTCN-3 testing architecture:
the control part launches the Master

Test Component that starts Parallel Test
Components. The interface with the

System Under Test is done through ports.

