
Featuring research from

A Data-Driven Approach to Balance Delivery Agility with Business Risk

How to Monetize
Application Technical Debt

2

The following section is excerpted from Measure and Manage Your
IT Debt by Gartner analyst Andy Kyte. To view the full note, click
anywhere in the section.

When budgets are tight, maintenance gets cut. After a decade of tight
budgets, the scale of the maintenance backlog has created systemic
risk, particularly for large organizations. CIOs and IT management
teams need to begin a new type of dialogue with the rest of the
business about maintaining the integrity of critical application assets.

Key Findings

•	 The	lack	of	a	detailed	application	inventory,	coupled	with	the	lack	
of a strategic application life cycle planning discipline in most
organizations, means that IT management teams have very little
awareness of the scale of IT debt in their organizations.

•	 The	consolidation	in	the	IT	industry,	coupled	with	technology	
innovations, means that the next upgrade for many major
applications will be a rearchitecting upgrade – a significantly more
expensive and risky venture than many have experienced over the
last 10 years.

•	 Current	global	IT	debt	is	estimated	to	stand	at	$500	billion,	with	the	
potential	to	rise	to	$1	trillion	by	2015.

Recommendations

•	 Implement	the	management	disciplines	associated	with	
application portfolio management to gain an accurate and reliable
inventory, and to understand the current costs of running the
existing applications.

•	 Develop	strategic	plans	for	each	application	in	the	inventory	to	
identify whether and when major maintenance activities will be
required to maintain the engineering integrity of the portfolio.

•	 Publish	a	simple	and	accessible	application	status	report	at	least	
annually, targeted at the managers in the rest of the business, with
information that highlights the growing scale of the IT debt problem.

Excerpt from:

Measure and Manage Your IT Debt

Application	Structural	Quality	is	the	Key	to	Software	Risk	Management	is	published	by	CAST.	Editorial	supplied	by	CAST.	is	independent	of	Gartner	analysis.	All	Gartner	research	is	©	2011	by	Gartner,	Inc.	and/or	its	
Affiliates.	All	rights	reserved.	All	Gartner	materials	are	used	with	Gartner’s	permission	and	in	no	way	does	the	use	or	publication	of	Gartner	research	indicate	Gartner’s	endorsement	of	CAST’s	Software	products	and/or	
strategies. Reproduction and distribution of this publication in any form without prior written permission is forbidden. The information contained herein has been obtained from sources believed to be reliable. Gartner
disclaims all warranties as to the accuracy, completeness or adequacy of such information. Gartner shall have no liability for errors, omissions or inadequacies in the information contained herein or for interpretations
thereof. The reader assumes sole responsibility for the selection of these materials to achieve its intended results. The opinions expressed herein are subject to change without notice.

2
Measure and Manage Your IT Debt

5
Application Technical Debt:
A Data-Driven Approach to Balance
Delivery Agility with Business Risk

14
About CAST

http://imagesrv.gartner.com/media-products/pdf/cast_software/gartner2.pdf
http://imagesrv.gartner.com/media-products/pdf/cast_software/gartner2.pdf
http://imagesrv.gartner.com/media-products/pdf/cast_software/gartner2.pdf

3

3

•	 Ensure	that	any	business	case	for	investment	in	a	new	system	
contains a lifetime total cost of ownership (TCO) estimate that
takes into account the probable maintenance activities over the
life of the system. Then put in place IT funding that recognizes the
long-term commitment.

WHAT YOU NEED TO KNOW

The management of IT debt is an unwelcome addition to the
challenges that beset an IT management team, but the problem is
real, and it will not go away. The IT management team needs to make
an honest assessment of the integrity of its entire application portfolio
and estimate the budget that is likely to be needed to maintain the
integrity of the application portfolio at an acceptable level for the
needs of the business. This means ensuring that there is an accurate
and reliable inventory of applications, with each application having
a management plan that shows whether and when maintenance or
replacement investment is likely to be needed. The results of such an
assessment will be, at best, unsettling and, at worst, truly shocking.
Whatever the results, the IT management team must make dealing
with IT debt a priority for the coming decade.

STRATEGIC PLANNING ASSUMPTION(S)

Global	IT	debt	is	estimated	to	be	$500	billion,	with	the	potential	to	
grow	to	$1	trillion	by	2015.

ANALYSIS

The Sources of IT Debt
A modern enterprise or public sector organization is likely to be
critically dependent on a number of business applications. These
applications are engineering artifacts – that is to say, they are not
just abstract concepts, but real collections of data and business logic
encapsulated in programming instructions and myriad platform
components, such as operating systems, databases, hardware and
network infrastructure. These engineering artifact components are
not immutable objects: Each one of them is at a particular point in a
complex life cycle; each one of them is slowly but inevitably diverging
from its ideal state toward a suboptimal state, and potentially toward
obsolescence or failure. Through judicious investment in application
maintenance, an application team can fight off the ravages of time
and reverse some of the effects of aging – but such investments can
be tough to justify in a tight economy when precious investment funds
need to be used to deliver short-term, visible business benefits.

Over the past decade, the net effect of these conflicting forces of
“application decay,” and the shortage of investment funds to deal
with this decay, has been that important maintenance activities

have been repeatedly postponed in favor of important “business
value add” projects. Alongside this internal finance trend, there have
been some significant shifts in the technology markets that deliver
applications, and the platforms that sustain applications, so that while
the current version of an application may be running well, the next
upgrade for many applications is going to involve a substantial shift
in the underlying platform infrastructure – or portends the need for a
replacement system. These decisions can be delayed for a while, but
they cannot be indefinitely postponed. This combination of internal
budget tightness and technology market changes means that the
vast majority of organizations have built up a substantial backlog of
“essential” maintenance activities that are becoming more important
to address and more expensive to address as the years go by. One
way to characterize this backlog of deferred liability is to see it as a
debt incurred in previous years that will need to be paid off at some
time. This “IT debt” is a hidden risk for many organizations, and, given
continued tight economic conditions – meaning little or no money
available for maintenance activities – this IT debt is growing, and the
associated business risk is growing. In fact, as the business continues
to invest in business value-add projects that add more functionality
and complexity into the existing and aging portfolio, the size of the IT
debt grows as well, since the additional functionality and complexity
will need to be maintained and upgraded to a more reliable state at
some point in the future.

The Scale of IT Debt
At this point, you might be saying: “Hasn’t it always been like this?”
While it is true that there has never been an IT organization without
a backlog of maintenance activity, the scale of the problem is
significantly greater than it has ever been. It is not unreasonable to
suggest that the maintenance backlog – and, therefore, the IT debt
– was probably at an all-time low on 31 December 1999, when every
IT organization had spent a significant amount of money upgrading
or	replacing	systems	in	order	to	deal	with	Y2K.	Since	then,	however,	
the demands for IT investment to deliver real business value through
running, growing or transforming the business have drained the
maintenance coffers year after year, so year after year the IT debt has
grown. And dealing with this burgeoning IT debt is a classic example
of the management problem of trying to resolve the conflict between
short-term business imperatives and long-term investment strategies.

How big is the problem of IT debt? In order to answer this question
in a single organization, it’s necessary to look at the inventory of
all business applications, and then evaluate the potential costs for
bringing all the elements in the portfolio up to a reasonable standard
of engineering integrity, or replace them. The challenge here is

4

that very few IT organizations have reliable inventories of business
applications, and even fewer have any meaningful estimates of the
likely cost of delayed maintenance activities. However, based on
research conducted with some client organizations with effective
application portfolio management processes, we estimate that
Fortune	2000	businesses	and	large	public	sector	agencies	have	an	
average	IT	debt	of	more	than	$200	million	–	meaning	that,	globally,	IT	
debt	stands	conservatively	at	$500	billion.	Furthermore,	as	IT	budgets	
are tightened and technology markets consolidate, the scale and
complexity of major upgrades or replacement projects is growing,
meaning that, without substantial effort to reduce it, global IT debt is
likely	to	reach	$1	trillion	by	2015.

Managing IT Debt
So what can the CIO and the IT management team do to address
the problem of IT debt? The starting point for any activity must be the
collection of reliable data about the scale of the problem. This means
developing an inventory of applications and a process to ensure that
the inventory is maintained. It means calculating the cost of running
every application in the portfolio, and then estimating the costs likely

to be incurred in bringing the application up to an acceptable level
of engineering integrity. (For a description of this process, please see
“How	the	CIO	Can	Increase	the	Value	of	the	Application	Portfolio”).

The key here is to express the impact of deferred maintenance
in terms of the increase in risk to business processes and the
degradation of efficiency of business processes. The issue must
never be the applications themselves – it is what they enable that is
important. This initial assessment is the beginning of knowledge, but
the knowledge must be translated into action. The challenge here is
that action will mean investment, and the rest of the business quite
rightly wants to see tangible business results from IT investments.
So addressing IT debt involves beginning a new type of discussion
between the IT management team and the rest of the business – a
discussion about the medium- to long-term viability and integrity
of the application portfolio. This discussion might usefully start by
engaging all the application stakeholders in the nuanced decisions
that have to be made in the “cash flow versus risk” analysis. This is not
an “instead of” discussion about how IT can contribute value through
helping to run, grow and transform the business, it is additive to the
existing dialogues, not an alternative.

Source: Gartner

5

5

Application Technical Debt:
A Data-Driven Approach to Balance
Delivery Agility with Business Risk

Introduction

Andy Kyte eloquently captures the systemic
risk in the application portfolio caused by the
Technical Debt that applications have accrued
in last decade. His call to action is to collect
reliable data about the scale of the problem.

At CAST Research Labs, our data repository
of software structural quality data –
Appmarq -- provides a unique foundation
for quantifying the scale of Technical Debt in
businesses worldwide. In its current state,
Appmarq contains data on software size,
complexity,	and	structural	quality	from	75	
IT organizations from around the world.
There	are	288	applications	in	the	data	set	
and each application is measured along
27	distinct	attributes,	resulting	in	a	total	of	
approximately	8,000	data	points.	This	article	
builds on the summary of results presented
in the CAST Worldwide Application Software
Study	–	2010.

In this article we explain how Appmarq is
used to monetize the Technical Debt of an
application. A fundamental element in the
calculation of Technical Debt is a “violation”.
Violations, as we will explain in more detail,
are at the root of an application’s structural
quality. Hence, our monetization of Technical
Debt is based on reliably collecting and
quantifying the root causes of the systemic
risks in an application.

Our results show that even a conservative
calculation of Technical Debt in the typical
business	application	tops	$1	Million. There is
substantial systemic risk in applications but also
a substantial opportunity for improvement.

We begin with a definition of Technical Debt
and the result of our calculation of Technical
Debt in a typical application. We then present
the details behind this calculation – the
fundamental elements in the calculation and
how they are put together to generate the
result. We conclude with recommendations
for when Technical Debt should be measured
and the actions CIOs should take once
Technical Debt is monetized.

The Definition of Technical Debt and How
It’s Calculated

There are many ways to define and calculate
Technical Debt, so let’s begin with our
definition and its merits.

We define Technical Debt as the cost of
fixing the structural quality problems in
an application that, if left unfixed, put the
business at serious risk. Technical Debt
includes only those application structural
quality problems that are highly likely to
cause business disruption and hence put
the business at risk; it does not include all
problems, just the serious ones.

Under this definition of Technical Debt, we
find that a typical application of 374,000 lines
of	code	(KLOC)	has	more	than	$1	Million	of	
Technical Debt. Technical Debt does vary
by	application	technology/language.	For	
hypotheses as to why and for more details,
please see the CAST Worldwide Application
Software	Study	–	2010.

Given our definition of Technical Debt,
measuring it requires us to quantify an
application’s structural quality problems
that put the business at risk. This is where
Appmarq comes in. Appmarq contains
data on the structural quality of business
applications (as opposed to data on the
process by which these applications are
built). Application structural quality measures
how well an application is designed and
how well it is implemented (the quality
of the coding practices and the degree
of compliance with the best practices of
software engineering that promote security,
reliability, and maintainability). To read more
about how software structural quality metrics
can be used to control IT costs and risks,
please see the Gartner Newsletter Software
Risk	Management:	A	Primer	for	IT	Executives.

The basic measure of application structural
quality in Appmarq is the number of
violations per thousands of lines of code
(violations per KLOC). Violations are instances
when an application fails to accord with

one or more rules of software engineering.
Violations can be grouped according to
their potential customer impact in terms of
the business disruption they create if left
unresolved: the higher the level of business
disruption, the higher the severity of the
violation. The most severe violations are
categorized as “critical violations.”

The number of violations per KLOC for
each application is not obtained from
surveys	of	project/program	managers;	
rather, it is measured using the repeatable,
automated CAST Application Intelligence
Platform. Our approach therefore rests on
the foundation of objective, repeatably-
measured quantities. It is not susceptible
to the subjectivity and inconsistencies that
undermine survey-driven data collection.
Moreover, the size of the data set is large
enough to make robust estimates of the
number of low-, medium-, and high-severity
violations per KLOC in the universe of all
business applications.

We have independently verified the strong
correlation between violations and business
disruption events in a number of real-world
field tests of mission-critical systems. By
focusing solely on violations, this calculation
of Technical Debt takes into account only the
problems that we know will cause business
disruption. We also apply this conservative
approach to quantifying the cost and time
it takes to fix violations (all assumptions are
stated clearly below).

In defining and calculating Technical Debt as
we do, we err on the side of a conservative
estimate of the scale of Technical Debt. The
actual Technical Debt is likely to be higher
and our aim is to simply set the value for the
floor – the lowest value it is likely to be. We
think this is the right direction to err when it
comes to monetizing Technical Debt.

http://www.castsoftware.com/Resources/Research-Labs.aspx
http://www.castsoftware.com/Resources/AppmarqStudy.aspx
http://www.castsoftware.com/Resources/AppmarqStudy.aspx
http://www.castsoftware.com/Resources/AppmarqStudy.aspx
http://www.castsoftware.com/Resources/AppmarqStudy.aspx
http://imagesrv.gartner.com/media-products/pdf/cast_software/issue1.pdf
http://imagesrv.gartner.com/media-products/pdf/cast_software/issue1.pdf
http://www.castsoftware.com/Product/Application-Intelligence-Platform.aspx
http://www.castsoftware.com/Product/Application-Intelligence-Platform.aspx

6

Four Steps for Calculating Technical Debt

Step 1. The density of violations per thousand lines of code (KLOC)
is derived from source code analysis using the CAST Application
Intelligence	Platform.

Step	2. Violations are categorized into low, medium and high severity.
The Technical Debt calculation assumes that only 50%	of	high-severity	
violations,	25%	of	medium-severity	violations,	and	10%	of	low-severity	
violations require fixing to prevent business disruption.

Step 3. We conservatively assume that each violation, no matter its
level	of	severity,	takes	1	hour	to	fix	at	a	fully-burdened	cost	of	$75	
per hour. Although these numbers could be a lot higher, especially
when the fix is applied during operation, we assume these values to
produce a conservative estimate.

Step 4. The formula for Technical Debt:

•	 L	=	Number	of	Low-Severity	Violations	per	KLOC

•	 M	=	Number	of	Medium-Severity	Violations	per	KLOC

•	 H	=	Number	of	High-Severity	Violations	per	KLOC

•	 S	=	Average	Application	Size	(KLOC)

•	 C	=	Cost	to	Fix	a	Violation	($	per	Hour)

•	 T	=	Time	to	Fix	a	Violation	(Number	of	Hours)

Technical	Debt	per	Application	=	[(10%	*	L)	+	(20%	*	M)	+	(50%	*	H)]	*	C	*	T	*	S

Using Appmarq data to arrive at the values for L, M, H, and S, the
amount of Technical Debt in a typical business application of 374
KLOC is over $1 Million.

Once Technical Debt is monetized, what next? In the next section we
explain the steps that CIOs and Application delivery and maintenance
heads should take once they have measured and monetized the
Technical Debt of their business-critical applications.

Setting a Technical Debt Threshold

Getting a handle on the systemic risk in an application begins with an
assessment of its Technical Debt. This measurement is a way to monetize
the quality of the application – it puts a dollar figure on the quality of an
application. This monetization is critical because it translates structural
quality into money, the universal language of business. It enables apples-
to-apples comparisons that were not possible before.

We all know that application quality is important. Being able to
monetize quality means we can now ask a further, critical question,
namely, how much quality is enough? Or to put it another way, how
much should we invest in this application to manage its systemic risk?

Figure 1 is a conceptual diagram that illustrates the tradeoff between
Technical	Debt	and	business	value.	Please	keep	in	mind	that	the	
diagram is illustrative and uses no actual data.

The increase in Technical Debt as the number of violations rise is
shown by the red line in Figure 1. The blue line shows the declining
business value as the number of violations rise. The point of
intersection at which the curves meet marks the maximum Technical
Debt that can be tolerated by the application. Anything to the right of
that means a precipitous drop in business value and a simultaneous
rise in the cost to operate the application.

The goal is to keep the number of structural quality violations well
to the left of the intersection of the curves. The range of acceptable
values of Technical Debt below the threshold can vary based on the
exact nature of the Technical Debt and the Business Value curves. This
is indicated by the gray shaded area. Moving left beyond the shaded
area might be too much of a good thing – there is a point beyond
which improving quality has diminishing marginal improvement in
business value.

From Monetization to Action – Three Use Cases

We recommend that CIOs and heads of Applications use an automated
system	to	evaluate	the	structural	quality	of	their	3	to	5	mission-critical	
applications. As each of these applications is being built, measure its
structural quality at every major release. When the applications are in
operation, measure their structural quality every quarter.

In particular, keep a watchful eye on the violation count; monitor
the changes in the violation count and calculate the Technical Debt
of the application after each quality assessment. Once you have a
dollar figure on Technical Debt, use Figure 1 to determine how much
Technical Debt is too much and how much is acceptable based on the
marginal return on business value. For a framework for calculating the
loss of business value due to structural quality violations, please see,
The Business Value of Application Internal Quality by Dr. Bill Curtis.

Use	Case	1:	Periodic	Count	of	Structural	Quality	Violations

While an application is being developed or being operated, establish
an automated process for periodically measuring the structural quality
of the application based on the number and the trend of structural
quality violations. Use this information to make the right tradeoffs
between delivery speed, application quality, and business value.

http://www.castsoftware.com/Product/Application-Intelligence-Platform.aspx
http://www.castsoftware.com/Product/Application-Intelligence-Platform.aspx
http://www.slideshare.net/jsub/the-business-value-of-application-internal-quality-web-version-1928853

7

7

Use	Case	2:	Acceptance	Quality	Gate

Before you accept an application for production, measure its Technical
Debt against a pre-set threshold for acceptance. Use this objective
measure to clearly communicate your IT and business goals to your
internal teams and to your service providers.

Use	Case	3:	Industrialization	of	Systemic	Risk	Reduction	Processes

Integrate the practice of measuring Technical Debt into your delivery
model. Involve your developers, architects, QA, and DevOps to take
immediate actions to reduce Technical Debt rather than wait until it
might be too late (or too expensive). The cycle of measurement and
structural quality improvement improves team learning, performance,
and morale. Moreover, these improvements in the team’s productivity
can be quantified in terms of the same metrics that are used to
measure structural quality.

Conclusion

As Gartner analyst Andy Kyte recommends, the first step to getting a
handle on the systemic risks in your portfolio is to measure the scale of
Technical Debt in your applications. Measurement is the first step, but it
is an important step. To ensure objective, cost-effective measurement,

use an automated system to evaluate the structural quality of your
business-critical applications. Make sure that your assessment of
Technical Debt is grounded on a key driver of software structural quality.

The analysis in this article is grounded in objective counts of violations
which have been verified in numerous field tests to be the key drivers
of application costs and risks in organizations worldwide. The power
of this Technical Debt calculation is not in its mechanics (which we
have purposefully kept very simple) but in the fundamental bits of
data on which it is based. The independent confirmation that these
fundamental elements (structural quality lapses measured as number
of low-, medium-, and high-severity violations) play a significant role in
the business productivity of companies worldwide further strengthens
the objectivity and accuracy of the calculation.

Once Technical Debt is measured, juxtapose it with the business value
of applications to inform critical tradeoffs between delivery agility and
business risk. Set the appropriate threshold for Technical Debt and
monitor critical applications against this threshold to ensure that the
right balance between agility and business risk is maintained as IT
and business conditions evolve.

Source: CAST

Source: CAST

FIGURE 1
Application Technical Debt and Business Value as a Function of Structural Quality Violations (Conceptual)

8

The	CAST	Application	Intelligence	Platform	is	the	only	enterprise-grade	
software quality assessment and performance measurement solution
available in the market today. The CAST solution inspects the source
code, identifies and tracks quality issues, and provides the data to
monitor development performance.

CAST can read, analyze and semantically understand most kinds
of source code, including scripting and interface languages, 3GLs,
4GLs, web and mainframe technologies, across all layers of an
application (UI, logic and data). By analyzing all tiers of a complex
application, CAST measures quality and adherence to architectural
and coding standards, while providing visual specification models.
Managers get real time access to this information via a web
interface by which they can proactively monitor, measure and
improve application health and development team performance.

CAST’s	unique	technology	is	the	result	of	more	than	$80	million	in	
R&D investment. Top engineering talent, dedicated to building the
best technology for assessing the structural quality of mission-
critical applications, has made CAST the leader in Automated
Application Intelligence. CAST’s mission is to use software
measurement to transform application development into a
management discipline.

Founded	in	1990,	CAST	has	helped	more	than	650	organizations	
worldwide accelerate IT delivery to the business, mitigate risks in
production, improve customer experience, and reduce the total
cost of application ownership. CAST is listed on NYSE-Euronext
(Euronext:	CAS)	and	serves	Global	2000	organizations	worldwide	
with a global network of locations in the US and Europe.

www.castsoftware.com
CAST Headquarters
North America: +1 212-871-8330
Europe: +33 1 46 90 21 00

About CAST

