

I2C Real-Time Clock/Calendar with Integrated Backup Power

Features

- Integrated rechargeable solid state battery with power-fail detect and automatic switchover, providing greater than 24 hours of backup
- Smallest commercially available RTC with integrated backup power in compact 5mm x 6mm
 1.4mm QFN package
- Temperature compensated charge control
- Integrated EnerChip™ recharged at VDD > 2.5V
- SMT lead-free reflow tolerant
- Real time clock provides year, month, day, weekday, hours, minutes, and seconds based on a 32.768 kHz quartz crystal
- Resolution: seconds to years
- Watchdog functionality
- Freely programmable timer and alarm with interrupt capability
- 2-line I2C-bus with separate, but combinable data input and output
- Selectable integrated oscillator load capacitors for C_i = 7 pF or C_i = 12.5 pF
- Internal power-on reset (POR)
- Open-drain interrupt or clock output pins
- Programmable offset register for frequency adjustment
- Eco-friendly, RoHS compliant tested

Applications

- Wireless sensors and RFID tags and other powered, low duty cycle applications.
- Power bridging to provide uninterrupted RTC function during exchange of main batteries.
- Consumer appliances that have real-time clocks; provides switchover power from main supply to backup battery.
- Business and industrial systems such as: network routers, point-of-sale terminals, singleboard computers, test equipment, multi-function printers, industrial controllers, and utility meters.
 - Time keeping application
 - Battery powered devices
 - Metering
 - · High duration timers
 - · Daily alarms
 - Low standby power applications

5mm x 6mm x 1.4mm 16-QFN Package

General Description

The EnerChip RTC CBC34523-Q5C combines a Real-Time Clock (RTC) and calendar optimized for low power applications with an integrated rechargeable solid state backup power source and all power management functions. The EnerChip RTC ensures a seamless transition from main power to backup power in the event of power loss. The integrated power management circuit provides thousands of charge-discharge cycles from the integrated the EnerChip and manages battery charging, discharge cutoff, power switchover, and temperature compensation to maximize the service life of the device. The CBC34523 provides greater than 24 hours of backup time in the event main power is interrupted. Typical blackout times are less than 4 hours. The EnerChip has extremely low self-discharge, recharges quickly, is non-flammable, and RoHScompliant. The EnerChip is charged automatically anytime VDD is above 2.5V.

Data is transferred serially via an I2C-bus with a maximum data rate of 1000 Kbits/s. Alarm and timer functions provide the option to generate a wake-up signal on an interrupt pin. An offset register allows fine tuning of the clock.

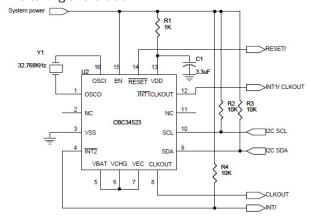


Figure 1: CBC34523 Pin-out Diagram

DS-72-32 Rev V.05

CBC34523 EnerChip™ RTC

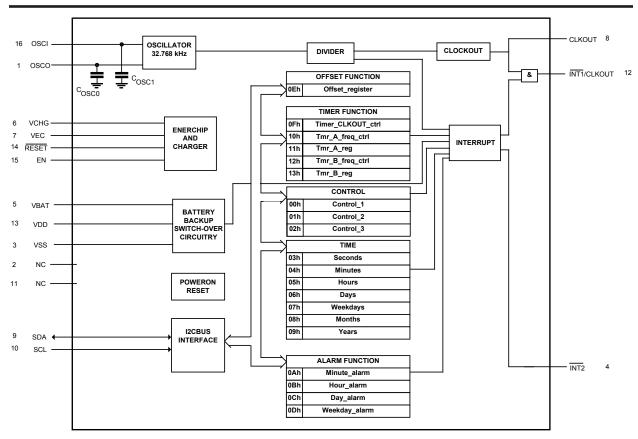


Figure 2: CBC34523 EnerChip RTC Block Diagram with Registers

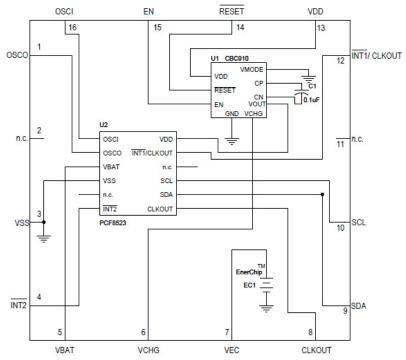


Figure 3: Internal Schematic of CBC34523 EnerChip RTC

Page 2 of 9

CBC34523 Input/Output Descriptions

Pin Number	Label	Description
1	osco	Oscillator output; high-impedance node; minimize wire length between quartz and package
2	NC	Not connected; do not connect and do not use it as feed through
3	VSS	Ground
4	INT2/	Interrupt 2 output (open-drain; active LOW)
5	VBAT	Backup battery supply input
6	VCHG	4.1V (typical) charging source - connect to VBAT only, or VBAT and optional EnerChip(s)
7	VEC	Positive terminal of integrated thin film battery - connect to VCHG and noth- ing else
8	CLKOUT	Clock output (open-drain)
9	SDA	Serial data input/output
10	SCL	Serial clock input
11	NC	Not connected; do not connect and do not use it as feed through
12	INT1/ CLKOUT/	Interrupt 1 / clock output (open-drain)
13	VDD	Supply voltage
14	RESET/	Output signal indicating RTC is operating in backup power mode
15	EN	Charge pump enable; activates VCHG 4.1V (typ.) charging source
16	osci	Oscillator input; high-impedance node; minimize wire length between quartz and package

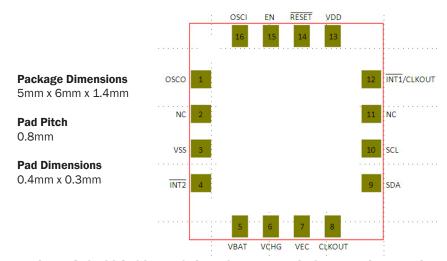


Figure 4: CBC34523 EnerChip RTC Package Pin-Out (top view, looking through package)

EnerChip Properties

Energy capacity (typical): $5\mu Ah$ Recharge time to 80%: 10 minutes

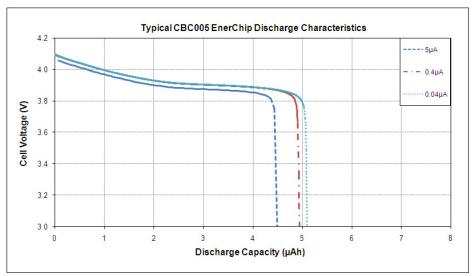
Charge/discharge cycles: >5000 to 10% depth-of-discharge

Operating temperature: $-20^{\circ}\text{C to } +70^{\circ}\text{C}$ Storage temperature: $-40^{\circ}\text{C to } +125^{\circ}\text{C}$

Minimum VDD to charge EnerChip: 2.5V

Absolute Maximum Ratings

PARAMETER	CONDITION	MIN	TYPICAL	MAX	UNITS
VDD with respect to GND	25°C	GND - 0.3	-	6.0	V
ENABLE Input Voltage	25°C	GND - 0.3	-	VDD+0.3	V
VBAT (1)	25°C	3.0	-	4.15	V
VCHG (1)	25°C	3.0	-	4.15	V
RESET Output Voltage	25°C	GND - 0.3	-	Vour+0.3	V
CP, Flying Capacitor Voltage	25°C	GND - 0.3	-	6.0	V
CN	25°C	GND - 0.3	-	VDD+0.3	V


⁽¹⁾ No external connections to these pins are allowed, except parallel EnerChips.

Integrated EnerChip Thin Film Battery Operating Characteristics

PARAMETER		CONDITION	MIN	TYPICAL	MAX	UNITS
Self-Discharge (5 yr. average)		Non-recoverable	-	2.5	-	% per year
		Recoverable	-	1.5 ⁽¹⁾	-	% per year
Operating Temperature		-	-20	25	+70	°C
Storage Temperature		-	-40	-	+125 (2)	°C
Recharge Cycles	25°C	10% depth-of-discharge	5000	-	-	cycles
(to 80% of rated		50% depth-of discharge	1000	-	-	cycles
capacity)	40°C	10% depth-of-discharge	2500	-	-	cycles
		50% depth-of-discharge	500	-	-	cycles
Recharge Time (to 80% of rated		Charge cycle 2	-	11	22	minutes
capacity; 4.1V charge; 25°C)		Charge cycle 1000	-	45	70	minutes
Capacity		150nA discharge; 25°C	5	-	-	μAh

⁽¹⁾ First month recoverable self-discharge is 5% average.

 $^{^{(2)}}$ Storage temperature is for uncharged EnerChip CC device.

Note: All specifications contained within this document are subject to change without notice.

Functional Description of Integrated PCF8523 Real-Time Clock

The PCF8523 contains:

- 20 8-bit registers with an auto-incrementing address register
- An on-chip 32.768 kHz oscillator with two integrated load capacitors
- A frequency divider, which provides the source clock for the Real-Time Clock (RTC)
- A programmable clock output
- A 1 Mbit/s I2C-bus interface
- An offset register, which allows fine-tuning of the clock

All 20 registers are designed as addressable 8-bit registers although not all bits are implemented.

- The first three registers (memory address 00h, 01h, and 02h) are used as control and status registers
- The addresses 03h through 09h are used as counters for the clock function (seconds up to years)
- Addresses OAh through ODh define the alarm condition
- Address 0Eh defines the offset calibration
- Address 0Fh defines the clock-out mode and the addresses 10h and 12h the timer mode
- Addresses 11h and 13h are used for the timers

Standby Mode

When the device is first powered up from the battery (V_{BAT}) but without a main supply (V_{DD}), the PCF8523 automatically enters the standby mode. In standby mode, the PCF8523 does not draw any power from the backup battery until the device is powered up from the main power supply V_{DD} . Thereafter, the device switches over to battery backup mode whenever the main power supply V_{DD} is lost.

It is also possible to enter into standby mode when the chip is already supplied by the main power supply V_{DD} and a backup battery is connected. To enter the standby mode, the power management control bits PM[2:0] have to be set logic 111. Then the main power supply V_{DD} must be removed. As a result of it, the PCF8523 enters the standby mode and does not draw any current from the backup battery before it is powered up again from main supply V_{DD} .

The interface is disabled in battery backup operation:

- Interface inputs are not recognized, preventing extraneous data being written to the device
- Interface outputs are high-impedance

PCF8523 Register Overview

The 20 registers of the PCF8523 are auto-incrementing after each read or write data byte up to register 13h. After register 13h, the auto-incrementing will wrap around to address 00h.

Bit positions labeled as '-' are not implemented and will return a '0' when read. Bit 'T' must always be written with logic '0'.

Address	Register name	Bit							
		7	6	5	4	3	2	1	0
Control r	egisters				'	'			
00h	Control_1	CAP_SEL	Т	STOP	SR	12_24	SIE	AIE	CIE
01h	Control_2	WTAF	CTAF	CTBF	SF	AF	WTAIE	CTAIE	CTBIE
02h	Control_3	PM[2:0]			-	BSF	BLF	BSIE	BLIE
Time and	date registers								
03h	Seconds	os	SECONE	SECONDS (0 to 59)					
04h	Minutes	-	MINUTE	S (0 to 59)					
05h	Hours	-	-	AMPM	HOURS	(1 to 12 in	12 hour m	iode)	
				HOURS (0 to 23 in 2	24 hour mo	ode)		
06h	Days	-	-	DAYS (1 t	o 31)				
07h	Weekdays	-	-	-	-	-	WEEKD	AYS (0 to	6)
08h	Months	-	-	- MONTHS (1 to 12)					
09h	Years	YEARS (0	to 99)						
Alarm reg	gisters								
0Ah	Minute_alarm	AE_M	MINUTE	_ALARM (0	to 59)				
0Bh	Hour_alarm	AE_H	-	AMPM	HOUR_	ALARM (1	to 12 in 12	2 hour mo	de)
			-	HOUR_A	LARM (0 t	o 23 in 24	hour mode	:)	
0Ch	Day_alarm	AE_D	-	DAY_ALA	ARM (1 to 3	31)			
0Dh	Weekday_alarm	AE_W	-	-	-	-	WEEKD	AY_ALAF	RM (0 to 6
Offset reg	gister								
0Eh	Offset	MODE	OFFSET	[6:0]					
СГОСКО	UT and timer regi	sters							
0Fh	Tmr_CLKOUT_ ctrl	TAM	ТВМ	COF[2:0]			TAC[1:0]		TBC
10h	Tmr_A_freq_ctrl	-	-	-	-	-	TAQ[2	2:0]	
11h	Tmr_A_reg	TIMER_A_	VALUE[7:	0]					
12h	Tmr_B_freq_ctrl	-	TBW[2:0]]		-	TBQ[2:0]	
13h	Tmr_B_reg	TIMER_B_	VALUE[7:	0]					

POWER SUPPLY CURRENT CHARACTERISTICS

Ta = -20°C to +70°C

CHARACTERISTIC	SYMBOL	CONDITION		MIN	MAX	UNITS
		ENABLE=GND	V _{DD} =3.3V	-	3.5	μΑ
Quiescent Current	lǫ	ENABLE-GND	V _{DD} =5.5V	-	6.0	μΑ
		ENABLE=V _{DD}	V _{DD} =3.3V	1	35	μΑ
			V _{DD} =5.5V	-	38	μΑ
EnerChip Cutoff Current (IQBATON adds to RTC	IQBATOFF	VBAT < VBATCO, VOUT=0		-	0.5	nA
current when in backup mode)	IQBATON	VBAT > VBATCO, ENABLE=VDD, I	оит=0	-	42	nA

INTERFACE LOGIC SIGNAL CHARACTERISTICS

 $V_{DD} = 2.5V \text{ to } 5.5V, Ta = -20^{\circ}C \text{ to } +70^{\circ}C$

CHARACTERISTIC	SYMBOL	CONDITION	MIN	MAX	UNITS
High Level Input Voltage	Vih	-	VDD - 0.5	-	Volts
Low Level Input Voltage	VIL	-	-	0.5	Volts
High Level Output Voltage	Vон	V _{DD} >Vтн (see Figures 4 and 5) IL=10µA	V _{DD} - 0.04V ⁽¹⁾	-	Volts
Low Level Output Voltage	Vol	IL = -100μA	-	0.3	Volts
Logic Input Leakage Current	lin	O <vin<vdd< td=""><td>-1.0</td><td>+1.0</td><td>nA</td></vin<vdd<>	-1.0	+1.0	nA

 $[\]overline{(1)}$ \overline{RESET} tracks \overline{VDD} ; $\overline{RESET} = \overline{VDD}$ - $\overline{(IOUTx\ ROUT)}$.

RESET SIGNAL AC/DC CHARACTERISTICS

 $V_{DD} = 2.5V \text{ to } 5.5V, Ta = -20^{\circ}C \text{ to } +70^{\circ}C$

CHARACTERISTIC	SYMBOL	CONDITION	MIN	MAX	UNITS
V _{DD} Rising to RESET Rising	treseth	V _{DD} rising from 2.8V TO 3.1V in <10µs	60	200	ms
VDD Falling to RESET Falling	tresetl	V _{DD} falling from 3.1V to 2.8V in <100ns	0.5	2	μs
TRIP Voltage Vdd Rising	Vreset	V _{MODE} =GND	2.85	3.15	V
RESET Hysteresis		VMODE=VDD	60	100	
Voltage (3)	VHYST	VMODE=GND	45	75	mV
(VDD to RESET)		VMODE = VDD/2	30	50	

⁽²⁾ User-selectable trip voltage can be set by placing a resistor divider from the VMODE pin to GND. Refer to Figure 8.

⁽³⁾ The hysteresis is a function of trip level in Mode 2. Refer to Figure 9.

CHARGE PUMP CHARACTERISTICS VDD = 2.5V to 5.5V, Ta = -20°C to +70°C

CHARACTERISTIC	SYMBOL	CONDITION	MIN	MAX	UNITS
ENABLE=V _{DD} to Charge Pump Active	tcpon	ENABLE to 3rd charge pump pulse, VDD=3.3V	60	80	μs
ENABLE Falling to Charge Pump Inactive	tcpoff	-	0	1	μs
Charge Pump Frequency	fcp		-	120	KHz (1)
Charge Pump Resistance	Rcp	Delta VBAT, for IBAT charging current of 1µA to 100µA CFLY=0.1µF, CBAT=1.0µF	150	300	Ω
Vснg Output Voltage	Vcp	CFLY=0.1μF, CBAT=1.0μF, Ιουτ=1μΑ, Temp=+25°C	4.075	4.125	V
Vсна Temp. Coefficient	Тсср	Іоит=1µА, Temp=+25°С	-2.0	-2.4	mV/°C
Charge Pump Current Drive	ICP	IBAT=1mA CFLY=0.1μF, CBAT=1.0μF	1.0	-	mA
Charge Pump on Voltage	VENABLE	ENABLE=V _{DD}	2.5	-	V

 $^{^{(1)}}$ $f_{CP} = 1/t_{CPPER}$

ADDITIONAL CHARACTERISTICS

Ta = -20°C to +70°C

CHARACTERISTIC	SYMBOL	CONDITION	LIM	ITS	UNITS
			MIN	MAX	
VBAT Cutoff Threshold	VBATCO	Ιουτ=1μΑ	2.75	3.25	V
Cutoff Temp. Coefficient	Tcco	-	+1	+2	mV/°C
VBAT Cutoff Delay Time	tcooff	VBAT from 40mV above to 20mV below VBATCO IOUT=1µA	40	-	ms

Note: All specifications contained within this document are subject to change without notice

Important Reference Documents

For complete specifications of the integrated PCF8523 Real-Time Clock, see here: http://www.nxp.com/documents/data_sheet/PCF8523.pdf

For complete specifications of the Cymbet 5μ Ah EnerChip and integrated power management circuit, see here: http://www.cymbet.com/pdfs/DS-72-21.pdf

Ordering Information

EnerChip CC Part Number	Description	Notes
CBC34523-Q5C	EnerChip RTC in 5mm x 6mm x 1.4mm 16-QFN Land Grid Array	Shipped in Tube
CBC34523-Q5C-TR1 CBC34523-Q5C-TR5	EnerChip RTC in 5mm x 6mm x 1.4mm 16-QFN Land Grid Array	Tape-and-Reel - 1000 pcs (TR1) or 5000 pcs (TR5) per reel

U.S. Patent No. 8,144,508. Additional U.S. and Foreign Patents Pending

Disclaimer of Warranties; As Is

The information provided in this data sheet is provided "As Is" and Cymbet Corporation disclaims all representations or warranties of any kind, express or implied, relating to this data sheet and the Cymbet EnerChip product described herein, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, non-infringement, title, or any warranties arising out of course of dealing, course of performance, or usage of trade. Cymbet EnerChip products are not authorized for use in life critical applications. Users shall confirm suitability of the Cymbet EnerChip product in any products or applications in which the Cymbet EnerChip product is adopted for use and are solely responsible for all legal, regulatory, and safety-related requirements concerning their products and applications and any use of the Cymbet EnerChip product described herein in any such product or applications.

Cymbet, the Cymbet Logo, and EnerChip are Cymbet Corporation Trademarks