WHY IS ANALYTICS THE CAREER FOR THE FUTURE?

We live in a digital world inundated by endless amount of data. Facebook, Twitter, YouTube, LinkedIn, and other internet based businesses have led to an explosion of data in our world. Retail, telecom, healthcare, airlines, Hospitality and even the sports industry are collecting and analysing massive amounts of data.

Analytics can help companies synthesize data into insights that can increase business revenues and efficiencies. The biggest challenge has been making optimum use of this data.

Professionals with the right analytic skills are in high demand.

McKinsey did a report on "Big data analytics" in 2011 and estimated a shortfall of "140,000 to 190,000 deep analytical talent" resources as well as "1.5 million data-savvy managers" in the US alone.

The possibilities for analytics continue to grow and evolve. Innovations in underlying technologies, platforms and analytic tools, drive this use. The need to evolve with their industries and skills in business analysis is a key part of this evolution. Analytics ensure that professionals keep pace with a fast evolving market.

In fact, we, the authors, believe that the "Masters in Business Administration" degree will also evolve to a "Masters in Business Analysis" degree.

So if you are excited about analytics and want to learn more about this field, you can begin your journey with this book. We hope you have a great career!
WHAT IS ANALYTICS?

Analytics can be defined as “the analysis of data to draw hidden insights to aid decision making”. Businesses now a days generate huge amounts of data. This data contains many patterns and trends that, if identified, can act as valuable and powerful guides for business decisions and strategy. For example, an e-retailer like Amazon gets hundreds of thousands of buyers on its website every day. By analysing the behaviour of the past customers, Amazon is able to predict what new customers may be interested in.

WHY DO I NEED TO LEARN ANALYTICS?

According to IBM, 90% of the data in this world has been produced in the last 2 years. This is an indicator of the torrent of data that has engulfed all facets of our life. The human mind is not capable of dealing with such large amounts of data. This is especially true in business. Large businesses have thousands of gigabytes of data containing billions of pieces of information. We need specialized tools and techniques to make sense of so much information. Hence, analytics has become a crucial part of managing any business.

Currently, there is a global shortage of trained analytic professionals. Acquiring analytic skills will secure your career for the future.

HOW SHOULD I USE THIS GUIDE?

This guide is meant to serve as a starting point for those who have little or no prior exposure to analytics. If you are seriously interested in this field, we recommend reading this guide from front to back. It’s short and easy to understand. There’s a printable PDF version for those who’d prefer, and scores of links to resources like blogs, forums, e-groups, websites, videos, white papers and books.

We wish you all the best for your journey to becoming an analytics wiz. We hope you find this guide a useful first step.
Analytics can range from a simple exploration into how many sales of a particular product were made last year to a complex neural network model predicting which customers to target for next year’s marketing campaign.

In “Competing on analytics”, Thomas Davenport defines analytics as “the extensive use of data, statistical and quantitative analysis, exploratory, predictive models, and fact-based management to drive decisions and actions.”

In layman’s terms it can be defined as “the analysis of data to draw hidden insights to aid decision making”.

There is a little bit of analyst in everyone. Analytics is an integral part of most businesses. You do not need to be an “analyst” to do analysis. Analytics is an essential skill for running any kind of business successfully. Common applications of analytics include the study of business data using statistical analysis in order to discover and understand historical patterns with an eye to predicting and improving business performance in the future.

A call centre manager analyses his team’s performance data for resource optimisation in the future.

There is a little bit of analyst in everyone. Analytics is an integral part of most businesses. You do not need to be an “analyst” to do analysis. Analytics is an essential skill for running any kind of business successfully. Common applications of analytics include the study of business data using statistical analysis in order to discover and understand historical patterns with an eye to predicting and improving business performance in the future.

In today’s workplace, every manager and most contributors are leveraging analytics to decide the optimal allocation of the marketing budget. Marketing ROI data to decide the optimal allocation of the marketing budget.

Some of the common types of analyses in marketing analytics include:

- Marketing analytics: marketing analytics is the practice of measuring, analyzing and managing marketing performance to maximize its effectiveness and optimize return on investment (ROI).
- Marketing mix optimization: marketing mix analysis uses techniques such as multivariate regressions to analyse sales and marketing time series data. It determines the effects of various marketing tactics in order to find out the optimal mix of various marketing activities to maximize revenue and/or profitability.
- Promotional analysis: promotions data is analysed to understand the sales lift and ROI from various promotional activities such as In-Store Displays, Newspaper & Pre-Print Features, Coupons, In-Store, Mail/Online Offers, Special Packs, Special Events, and Discounts etc.
- Price analysis: this analysis is done to determine the price elasticity of a product using the historical price and sales data. The results are used to provide insights into expected volume at new prices, key price points, changing price sensitivity and competitive price matching.

Analytics is an essential skill for running any kind of business successfully. Common applications of analytics include the study of business data using statistical analysis in order to discover and understand historical patterns with an eye to predicting and improving business performance in the future.

In today’s workplace, every manager and most contributors are leveraging analytics to decide the optimal allocation of the marketing budget.

MARKETING ANALYTICS

Marketing analytics is the practice of measuring, analyzing and managing marketing performance to maximize its effectiveness and optimize return on investment (ROI). It allows marketers to be more efficient at their jobs and minimize wasting marketing budgets.

Some of the common types of analyses in marketing analytics include:

- **Marketing mix optimization**: Marketing mix analysis uses techniques such as multivariate regressions to analyse sales and marketing time series data. It determines the effects of various marketing tactics in order to find out the optimal mix of various marketing activities to maximize revenue and/or profitability.
- **Marketing mix modelling**: very common in the CPG/FMCG industry. Companies such as P&G, HLL, Coke and Pepsi swear by this technique to analyse and optimize their marketing spend.
- **Price analysis**: This analysis is done to determine the price elasticity of a product using the historical price and sales data. The results are used to provide insights into expected volume at new prices, key price points, changing price sensitivity and competitive price matching.
- **Promotional analysis**: Promotions data is analysed to understand the sales lift and ROI from various promotional activities such as In-Store Displays, Newspaper & Pre-Print Features, Coupons, In-Store, Mail/Online Offers, Special Packs, Special Events, and Discounts etc.

DIFFERENT KINDS OF ANALYTICS

One of the ways to classify various kinds of analytics is by the domain it is applied in.

MARKETING ANALYTICS

Marketing analytics is the practice of measuring, analyzing and managing marketing performance to maximize its effectiveness and optimize return on investment (ROI). It allows marketers to be more efficient at their jobs and minimize wasting marketing budgets.

Some of the common types of analyses in marketing analytics include:

- **Marketing mix optimization**: Marketing mix analysis uses techniques such as multivariate regressions to analyze sales and marketing time series data. It determines the effects of various marketing tactics in order to find out the optimal mix of various marketing activities to maximize revenue and/or profitability.
- **Marketing mix modelling**: very common in the CPG/FMCG industry. Companies such as P&G, HLL, Coke and Pepsi swear by this technique to analyze and optimize their marketing spend.
- **Price analysis**: This analysis is done to determine the price elasticity of a product using the historical price and sales data. The results are used to provide insights into expected volume at new prices, key price points, changing price sensitivity and competitive price matching.
- **Promotional analysis**: Promotions data is analyzed to understand the sales lift and ROI from various promotional activities such as In-Store Displays, Newspaper & Pre-Print Features, Coupons, In-Store, Mail/Online Offers, Special Packs, Special Events, and Discounts etc.

CUSTOMER ANALYTICS

Customer analytics, essentially a sub-set of marketing analytics, can be classified separately because of its importance to various businesses. It is the analyzing of customer behavior and demographics to develop a better understanding of the consumer leading to better business decisions. Customer analytics is very close to loyalty analytics and is often used interchangeably. Some of the common analyses include:

- **Customer segmentation**: This is the classifying of a large customer population into smaller homogeneous groups. Modelling techniques such as regression modelling, clustering and decision trees are used.
- **Life time value analysis**: This analysis helps quantify the life time value of a customer to the business. This helps identify the most profitable (and hence the most important) customers. This type of analysis is very popular in subscription businesses such as telecom and e-tailing.
- **Attrition analysis**: Helps identify customers who are likely to attrite in a short time. This knowledge can help devise strategies to prevent attrition prevention.
WEB ANALYTICS

Web analytics is the analysis of internet data to understand and optimising web usage. It provides information about the number of visitors, hits and page views to a website. It helps gauge traffic and popularity trends which is useful for market research. The use of Web analytics enables a business to retain and attract customer and increase their profitability. There are two categories of web analytics: off-site and on-site web analytics.

Off-site web analytics refers to web measurement and analysis regardless of whether you own or maintain a website. It includes the measurement of a website’s potential audience (opportunity), share of voice (visibility), and buzz (comments) on the internet.

On-site web analytics measure a visitor’s journey once on your website. This includes its drivers and conversions. For example, it tracks pages that encourage people to make a purchase and measures the commercial performance of the website. This data is typically compared against key performance indicators, and is used to improve a website or marketing campaign’s audience response.

HUMAN RESOURCE ANALYTICS

Most large organizations have some form of a human resource information system that captures employee information such as hiring date, compensation and its growth over time, promotions, roles and performance ratings. Some companies will also capture additional attributes such as skill ratings, previous experience, trainings attended etc.

This kind of information can be the source for important insights. Organizations can predict which of their employees are likely to leave them and use measures to retain the desirable ones and manage the attrition more efficiently. Analytics can identify training needs and processes effectively. Data from the vendor management systems can be used by companies to track efficiency and effectiveness of recruitment processes.

Some sports clubs are great examples of successful HR analytics. Players are the most important asset and they invest a lot of money in them. It is understandable that the clubs are anxious to get the right personnel in their teams. Clubs like AC Milan (football) and the Patriots (American football) have employed quantitative HR techniques to compete successfully in the recent past.

Analytics— Analytics can simply be defined as the process of breaking a problem into simpler parts and using inferences based on data to drive decisions. Analytics is not a tool or a technology; rather it is a way of thinking and acting. At one end, Analytics overlaps with statistics and higher mathematics. At the other, it merges seamlessly with programming and software development. Analytics has widespread applications in spheres as diverse as science, astronomy, genetics, financial services, telecom, retail, marketing, sports, gaming and health care.

WEB ANALYTICS

Web analytics includes:

- Computation of Probability of Default (PD)
- Computation of Loss Given Default (LGD)
- Computation of Exposure at Default (EAD)
- Collection Scorecard development

WEB ANALYTICS

Web analytics is the analysis of internet data to understand and optimising web usage. It provides information about the number of visitors, hits and page views to a website. It helps gauge traffic and popularity trends which is useful for market research. The use of Web analytics enables a business to retain and attract customer and increase their profitability. There are two categories of web analytics: off-site and on-site web analytics.

Off-site web analytics refers to web measurement and analysis regardless of whether you own or maintain a website. It includes the measurement of a website’s potential audience (opportunity), share of voice (visibility), and buzz (comments) on the internet.

On-site web analytics measure a visitor’s journey once on your website. This includes its drivers and conversions. For example, it tracks pages that encourage people to make a purchase and measures the commercial performance of the website. This data is typically compared against key performance indicators, and is used to improve a website or marketing campaign’s audience response.

HUMAN RESOURCE ANALYTICS

Most large organizations have some form of a human resource information system that captures employee information such as hiring date, compensation and its growth over time, promotions, roles and performance ratings. Some companies will also capture additional attributes such as skill ratings, previous experience, trainings attended etc.

This kind of information can be the source for important insights. Organizations can predict which of their employees are likely to leave them and use measures to retain the desirable ones and manage the attrition more efficiently. Analytics can identify training needs and processes effectively. Data from the vendor management systems can be used by companies to track efficiency and effectiveness of recruitment processes.

Some sports clubs are great examples of successful HR analytics. Players are the most important asset and they invest a lot of money in them. It is understandable that the clubs are anxious to get the right personnel in their teams. Clubs like AC Milan (football) and the Patriots (American football) have employed quantitative HR techniques to compete successfully in the recent past.

Analytics— Analytics can simply be defined as the process of breaking a problem into simpler parts and using inferences based on data to drive decisions. Analytics is not a tool or a technology; rather it is a way of thinking and acting. At one end, Analytics overlaps with statistics and higher mathematics. At the other, it merges seamlessly with programming and software development. Analytics has widespread applications in spheres as diverse as science, astronomy, genetics, financial services, telecom, retail, marketing, sports, gaming and health care.

WEB ANALYTICS

Web analytics includes:

- Computation of Probability of Default (PD)
- Computation of Loss Given Default (LGD)
- Computation of Exposure at Default (EAD)
- Collection Scorecard development

WEB ANALYTICS

Web analytics is the analysis of internet data to understand and optimising web usage. It provides information about the number of visitors, hits and page views to a website. It helps gauge traffic and popularity trends which is useful for market research. The use of Web analytics enables a business to retain and attract customer and increase their profitability. There are two categories of web analytics: off-site and on-site web analytics.

Off-site web analytics refers to web measurement and analysis regardless of whether you own or maintain a website. It includes the measurement of a website’s potential audience (opportunity), share of voice (visibility), and buzz (comments) on the internet.

On-site web analytics measure a visitor’s journey once on your website. This includes its drivers and conversions. For example, it tracks pages that encourage people to make a purchase and measures the commercial performance of the website. This data is typically compared against key performance indicators, and is used to improve a website or marketing campaign’s audience response.

HUMAN RESOURCE ANALYTICS

Most large organizations have some form of a human resource information system that captures employee information such as hiring date, compensation and its growth over time, promotions, roles and performance ratings. Some companies will also capture additional attributes such as skill ratings, previous experience, trainings attended etc.

This kind of information can be the source for important insights. Organizations can predict which of their employees are likely to leave them and use measures to retain the desirable ones and manage the attrition more efficiently. Analytics can identify training needs and processes effectively. Data from the vendor management systems can be used by companies to track efficiency and effectiveness of recruitment processes.

Some sports clubs are great examples of successful HR analytics. Players are the most important asset and they invest a lot of money in them. It is understandable that the clubs are anxious to get the right personnel in their teams. Clubs like AC Milan (football) and the Patriots (American football) have employed quantitative HR techniques to compete successfully in the recent past.

Analytics— Analytics can simply be defined as the process of breaking a problem into simpler parts and using inferences based on data to drive decisions. Analytics is not a tool or a technology; rather it is a way of thinking and acting. At one end, Analytics overlaps with statistics and higher mathematics. At the other, it merges seamlessly with programming and software development. Analytics has widespread applications in spheres as diverse as science, astronomy, genetics, financial services, telecom, retail, marketing, sports, gaming and health care.

WEB ANALYTICS

Web analytics includes:

- Computation of Probability of Default (PD)
- Computation of Loss Given Default (LGD)
- Computation of Exposure at Default (EAD)
- Collection Scorecard development

WEB ANALYTICS

Web analytics is the analysis of internet data to understand and optimising web usage. It provides information about the number of visitors, hits and page views to a website. It helps gauge traffic and popularity trends which is useful for market research. The use of Web analytics enables a business to retain and attract customer and increase their profitability. There are two categories of web analytics: off-site and on-site web analytics.

Off-site web analytics refers to web measurement and analysis regardless of whether you own or maintain a website. It includes the measurement of a website’s potential audience (opportunity), share of voice (visibility), and buzz (comments) on the internet.

On-site web analytics measure a visitor’s journey once on your website. This includes its drivers and conversions. For example, it tracks pages that encourage people to make a purchase and measures the commercial performance of the website. This data is typically compared against key performance indicators, and is used to improve a website or marketing campaign’s audience response.

HUMAN RESOURCE ANALYTICS

Most large organizations have some form of a human resource information system that captures employee information such as hiring date, compensation and its growth over time, promotions, roles and performance ratings. Some companies will also capture additional attributes such as skill ratings, previous experience, trainings attended etc.

This kind of information can be the source for important insights. Organizations can predict which of their employees are likely to leave them and use measures to retain the desirable ones and manage the attrition more efficiently. Analytics can identify training needs and processes effectively. Data from the vendor management systems can be used by companies to track efficiency and effectiveness of recruitment processes.

Some sports clubs are great examples of successful HR analytics. Players are the most important asset and they invest a lot of money in them. It is understandable that the clubs are anxious to get the right personnel in their teams. Clubs like AC Milan (football) and the Patriots (American football) have employed quantitative HR techniques to compete successfully in the recent past.

Analytics— Analytics can simply be defined as the process of breaking a problem into simpler parts and using inferences based on data to drive decisions. Analytics is not a tool or a technology; rather it is a way of thinking and acting. At one end, Analytics overlaps with statistics and higher mathematics. At the other, it merges seamlessly with programming and software development. Analytics has widespread applications in spheres as diverse as science, astronomy, genetics, financial services, telecom, retail, marketing, sports, gaming and health care.
FRAUD ANALYTICS

Fraud detection is applicable to many industries—retail, banking, insurance, government agencies, law enforcement, and more. In banking, fraud can involve using stolen credit cards, forging checks, etc. In insurance, a quarter of the claims contain some form of fraud, resulting in approximately 10% of insurance pay-out dollars. Fraud can range from exaggerated losses to deliberately causing an accident for the pay-out. Since relatively few cases show fraud in a large population, finding these can be tricky.

Fraud analytics involves analysing millions of transactions and/or applications to spot patterns and detect fraud.

Logistic regression, neural networks and decision trees are some modelling techniques used in fraud detection.

HEALTHCARE ANALYTICS

Healthcare analytics is a fast growing field that focuses on application of analytics in the health care domain. Some of the common analyses include:

Clinical research analytics – This involves analysis of clinical trials data to see whether a drug has a beneficial effect.

Other analyses—include market forecast, marketing effectiveness and sales resource optimization

These are some of the most common domain-specific applications of analytics.

Other applications include R&D analytics, optimization analytics, collections analytics, market research and many more.

For someone who is looking to enter into the field of analytics, it is easy to get overwhelmed by all the different domains and terminologies. However, it’s important to remember that while analytics can be applied to many domains, the underlying methodology remains the same regardless of the application. For example, logistic regression can be applied in marketing, risk, sports and web analytics.

Today, we have covered the definition and application of analytics in different domains. We have also learnt that what changes across domains is the data you work with and the business problem you are trying to solve—and not the statistical technique or the basic analytic approach to follow. It is important to have a firm grasp on the different steps of the analytic methodology and underlying statistical techniques.

ANALYTICS TERMINOLOGY

Business Analytics – This term refers to the application of analytics specifically in business. It includes subsets like—

- Marketing analytics
- Risk analytics
- Fraud analytics
- CRM analytics

Industries which rely extensively on analytics include—

- Retail
- Telecom
- Health care
- Airlines
- Financial Services (Banks, Credit Cards, Loans, Insurance etc.)
- Any industry where large amounts of data is generated

Predictive Analytics – The term emphasizes the predictive nature of analytics (as opposed to, say the retrospective nature of tools like OLAP). This is a term that is designed by sales people and marketers to add glamour to any business. “Predictive analytics” sounds fancier than just plain “analytics”. In practise, predictive analytics is rarely used in isolation from descriptive analytics.

Descriptive analytics – Descriptive analytics refers to a set of techniques used to describe, explore or profile any kind of data. Any kind of reporting usually involves descriptive analytics. Data exploration and preparation are essential ingredients for

While analytics can be applied to many domains in different ways, the underlying analytics methodology as well as the modeling techniques remain the same regardless of the application. For example, logistic regression can be applied in marketing analytics as well as risk analytics. It can also be applied in web analytics or sports analytics.
predictive modelling and rely heavily on descriptive analytics.

Advanced analytics – Advanced analytics is also a marketing driven terminology. “Advanced” adds a little more punch and glamour to “Analytics” and is preferred by marketers.

Big data analytics – This term has gained popularity very recently. According to IBM, the amount of data being produced in the world is increasing so fast that 90% of the data existing today was created in the last 2 years alone. Increasingly sophisticated tools are required to deal with such vast quantities of data. Hence, the term “big data analytics”

Data Mining – Data mining is the term that is most interchangeably used with “Analytics”. Data Mining is an older term used in the nineties and the early 2000s. However, data mining began to be confused with OLAP and led to a drive to use descriptive terms like “Predictive analytics”. According to Google trends, “Analytics” overtook “Data mining” in 2005 and is about 5 times more popular now.

Knowledge Discovery – Knowledge discovery also means analytics, predictive analytics, advanced analytics, big data analytics and data mining.

Artificial Intelligence – The term “Artificial intelligence” was popular in the early stages of computing and analytics (in the 70s and 80s) but is now almost obsolete. There were a lot of comparisons between computing and human learning process and this is reflected in the terminology.

Machine Learning – Similar to “Artificial intelligence” this term too has lost its popularity to words like “Analytics” and its derivatives.

Business Intelligence (BI) – The phrase had promise when it stormed to popularity in the late 90s. It started off as a broad phase that encompassed descriptive and predictive analytics. However, it soon got mixed up with OLAP and reporting. Now its usage is largely in that context.

OLAP – Online analytical processing refers to descriptive analytic techniques of slicing and dicing data to understand and discover patterns and insights. The term is derived from another term “OLTP” – online transaction processing which comes from the data warehousing world.

Reporting – “Reporting” is perhaps the most unglamorous term in the world of analytics. Yet it is also one of the most widely used practices within the field. All businesses use reporting to aid decision making. While it is not “Advanced analytics” or even “Predictive analytics”, effective reporting requires a lot of skill and a good understanding of the data and domain.

Data warehousing – OK, this may actually be considered more unglamorous than even “Reporting”. Data warehousing is the process of managing a database and involves extraction, transformation and loading (ETL) of data. Data warehousing precedes analytics. The data managed in a data warehouse is usually taken out and used for business analytics.

Statistics – Statistics is the study of the collection, organization, and interpretation of data. Data mining does not replace traditional statistical techniques. Rather, it is an extension of statistical methods the result of a major change in the statistics community. The increased power of computers and their lower cost, coupled with the need to analyze enormous data sets with millions of rows, have allowed the development of new techniques based on a brute-force exploration of possible solutions.

LINKS TO WIKIPEDIA

• http://en.wikipedia.org/wiki/Analytics
• http://en.wikipedia.org/wiki/Business_analytics
• http://en.wikipedia.org/wiki/Predictive_analytics
• http://en.wikipedia.org/wiki/Big_data
• http://en.wikipedia.org/wiki/Data_mining
• http://en.wikipedia.org/wiki/Knowledge_discovery
• http://en.wikipedia.org/wiki/Artificial_intelligence
• http://en.wikipedia.org/wiki/Machine_learning
• http://en.wikipedia.org/wiki/Business_intelligence
• http://en.wikipedia.org/wiki/Olap
• http://en.wikipedia.org/wiki/Data_warehouse
• http://en.wikipedia.org/wiki/Statistics

A strong quantitative aptitude as well as a high degree of comfort in dealing with numbers and data are two of the most important attributes required to succeed in analytics.
The purpose of this section is to identify the qualities desired in analyst as well as list the skills and knowledge required to succeed.

Keen sense of intellectual curiosity: People who do well in analytics typically have a keen sense of inquisitiveness. They want to know the whys and hows of any situation. There has to be an interest in understanding the business issue and working out the specifics of the solution.

Mathematically oriented: To do well in analytics, you need to be comfortable with mathematical concepts, and not be afraid to use mathematical tools. This is not the career for you if the word Mathematics strikes fear in your heart!

Big picture vision: It is important to always remember the larger business issue that is being addressed through the process of working with data and dealing with minutiae.

Detail oriented: While it is important to remember the big picture, it is critical to pay attention to the details. While working with large volumes of data it is easy to lose sight of the specifics that add insight and understanding to solving business issues.

Interpretation skills: An analyst has to have the ability to interpret and solve problems. Numbers by themselves mean nothing. Experience and domain understanding give one the ability to interpret the results in the business context. The results aid in building strategies for business development.

There are other skills that one can acquire through education, training and experience.

- Knowledge of Statistics
- Knowledge of analytic tools like SAS, R, Excel, SQL, SPSS, Knowledgedstudio etc.
- Knowledge of the analytics methodology – the different steps to be followed for any analytics project
- Predictive modelling techniques such as regression, decision trees, clustering, market basket analysis etc.
- Experience with large data sets
- Project work such as segmentation, attrition modelling etc.

WHAT DOES IT TAKE TO SUCCEED IN ANALYTICS?

Academic Qualifications for Analytics

Analytics is attracting talent from many different fields. Previously, candidates with a masters or doctoral degree in Statistics or Economics were preferred. Today graduates, postgraduates and PhDs from all quantitative such as math, science and commerce are part of the industry:

- BBAs and MBAs
- MCA - their expertise in programming languages and database management systems
- B.E.s and B.Techs - A combination of engineering and MBA is an asset in this field.
- Qualified people from Pharmaceutical and Health sciences.
- Professors

ANALYTICS CAREER IN INDIA

There are certain factors to be kept in mind:

- Indian Analytics companies have international clients giving the opportunity to work and travel globally.
- Working non-standard hours is typical but night shifts are not common. Shift timings are usually either 9am to 5pm or 12pm to 8pm.
- Since the basic statistical techniques remain constant irrespective of the domain, analysts can move from one domain to the other with relative ease. It provides an opportunity to work across multiple industries.
- Growth in analytics is largely merit driven. A good analyst on a fast track could easily move up to middle management in less than 5 years. Similarly, you could be stuck at the same level for more than 2-3 years, if you do not pick up the skills required to move up to the next level.
- Analytics softwares have evolved a lot in the past 2 decades. Tools have become sophisticated, faster and user-friendly, with intuitive, easy to learn GUIs.
- The focus of a good analyst is to translate a business problem into an analytic problem and an analytic solution into business strategy.
Analytics was initially applied on data stored as tables. The scope expanded to include text from blogs, forums and websites. Digital media are also used for insights such as shopper behaviour inside a store.

Analytic tools are becoming faster, more sophisticated and user-friendly at the same time. There have been massive strides in the open source category with R becoming the most popular analytic tool in the world.

How does one keep pace with so many changes and advancements in the field? How does one even start building knowledge on analytics?

In this section, we will cover three sources of information on analytics –

- Books
- Blogs
- Other internet resources

BOOKS ON ANALYTICS

There are a lot of good books written on analytics. Not all of them are easily available in the Indian market. Many of these titles can be ordered from online book stores like Flipkart. The books which have an Indian publisher are usually cheaper whereas foreign publications are more expensive.

We have divided our list of favourite books into two sections.

The first section covers books on the fundamentals of analytics and business statistics. We have also included books showcasing applications of analytics in various industries.

The second section consists of books around specific analytic tools or software. These books cover tools like SAS, SPSS, R, SQL and excel.

Data Mining Techniques by Michael Berry and Gordon Linoff

This is an excellent book on the most widely used analytic techniques. It starts off with defining data mining in the current business context and then summarizes and presents the best practices in data mining. The book talks about some useful statistical concepts like p-value and chi-square as it takes the readers through the process of building a model. It explains analytic algorithms like Decision trees, market basket analysis, clustering, link analysis, clustering and survival analysis. The book is full of useful industry examples. This is the first book recommended for anyone with an interest in analytics.

Data Mining Cookbook by Olivia Parr Rud

This is a great guide for statistics used in analytics. Starting from simple central tendency measures to probability distributions to decision theory, this book covers the essentials of business statistics. It is used as course book in most management institutes in India. This book is recommended for anyone interested in Statistics.

Competing on Analytics by Thomas Davenport

This is a much-needed addition to the literature of analytics. The book describes how some leading international companies are using analytics to out-smart their competition. The book is full of case studies as diverse as retail to pharmaceuticals to sports to telecom. This book is a valuable resource in understanding how companies like Amazon, Netflix and Capital One have developed analytics as their key differentiator.

Statistics for Management by Richard Levin and David Rubin

This is a good reference guide for statistics used in analytics. Starting from simple central tendency measures to probability distributions to decision theory, this book covers the essentials of business statistics. It is used as course book in most management institutes in India. This book is recommended for anyone interested in Statistics.
This book has an easy style that will appeal to beginners. Some of the more complex topics may not be adequately addressed but a good book as an introduction.

Predictive Data Mining by Sholom Weiss

Freakonomics is an easy, interesting read, even for people who do not understand Statistics. The author uses the power of analytics to turn conventional wisdom on its head. With hypotheses like 'legalization of abortions has led to crime reduction' the book throws up some very interesting questions for its readers. A must-read for everyone.

Moneyball by Michael Lewis

This book studies the use of analytics in the sports industry. It case studies the Oakland Athletics, a US baseball team, with a payroll budget of less than a 3rd of some their rivals. Despite being small they have consistently been one of the best teams. The author shows how they leveraged analytics to get their advantage. OA analyzed metrics that were different from the ones traditionally looked at, but which they thought were more relevant to winning. A good example of analytics being used innovatively.

BOOKS ON ANALYTICS TOOLS

Little SAS Book by Lora Delwiche

This is a good book to learn SAS. It is readable as it is composed of two-page articles. Each one focuses on a specific task or function of SAS. The book is divided in 10 chapters that go through reading data sets, building reports, combining data sets, writing macros, using graphics, debugging SAS programs, etc. The book is a good reference for simple tasks. Any simple task you don’t know? Just look in the index and you will find the corresponding function. However, for more advanced topics, the book is a bit light. Well, that’s what the title also says.

SAS Programming by Example by Ron Cody

It is one of the best books available for beginners in SAS. The book is simple and easy to read with many industry examples for better understanding. The book deals with the essentials of analytics and reporting using SAS.

Data Manipulation in R by Phil Spector

This thin book provides a solid introduction to many of the functions and packages for importing, manipulating and processing data in R. Using a variety of examples based on data sets included with R, along with easily simulated data sets, the book is recommended to anyone who wants to learn R.

Data Analysis using SQL and Excel by Gordon Linoff

A good book on understanding how tools like SQL and Excel can be leveraged to extract useful business information from relational databases. The book is organized around chapters that become increasingly complex in the use of SQL, Excel, and data mining concepts.
BLOGS ON ANALYTICS

Blogs are a useful learning resource for any topic these days. Analytics has its fair share of bloggers. Here is a list of some useful blogs on analytics.

Decisionstats: www.decisionstats.com - Ajay Ohri, an alumnus of IIM Lucknow, has one of the most popular blogs in the field of analytics. A salient feature is an interview section where leading analytics figures have been interviewed. He has been publishing articles almost at the rate of 1 a day for the last three and half years and has close to 1500 articles published on his blog.

Data Mining Blog: http://www.dataminingblog.com/ - This blog by Sandro Saitta, a Swiss national, covers research issues, recent applications, important events, interviews with leading actors, current trends and book reviews in the field of analytics. The blog has some interesting book reviews but what we like most about this blog is the comprehensive list of analytics blogs.

This blog is written by Michael Berry and Gordon Linoff, two of the leading figures in the field of analytics. The two have written some of the most popular books in this field. Their books are used extensively in data mining courses by Universities across the globe. The blog is filled with excellent tips and knowledge nuggets from the writers’ vast experience in analytics consulting and is a must-read for any business analyst.

Flowing Data - http://flowingdata.com/ - FlowingData is the visualization and statistics site that shows different applications of data analysis. The blog is written by Nathan Yau, a PhD candidate in UCLA. Nathan wants to make data useful for even those who are not very data savvy through effective use of visual techniques.

Abbott Analytics - http://abbottanalytics.blogspot.com/ - The Abbott analytics blog is about “Tips, tricks, and comments in data mining and predictive analytics, including data preprocessing, visualization, modeling, and model deployment”.

The blog is hosted by Dean Abbott, president of Abbott Analytics in California, USA. Mr. Abbott has over 21 years of experience applying advanced data mining, data preparation, and data visualization methods in real-world data intensive problems, including fraud detection, response modeling and survey analysis.

Flowing Data - http://www.dataminingblog.com/ - This blog by Sandro Saitta, a Swiss national, covers research issues, recent applications, important events, interviews with leading actors, current trends and book reviews in the field of analytics. The blog has some interesting book reviews but what we like most about this blog is the comprehensive list of analytics blogs.

SAS RESOURCES

Though the SAS language is almost 45 years old now, it remains one of the most widely used statistical programming languages, competing with R, SPSS, Matlab and stata. It is facing competition with the open source language R in academia, research and customized applications.

The SAS-L Email Group- the SAS-L email group is a supportive and helpful resource for programmers at any level when stuck in a particular program. The archives are available at http://lib.stat.cmu.edu/archives/sas-l.html. People posting on the list are expected to paste a sample of the dataset structure, and a clear explanation of what they are trying to achieve.

The SAS Community Website- SAS Users have an online wiki for collaboratively adding in code samples, programs and sharing tips. The site is available at http://www.sascommunity.org/wiki/Main_Page and it is quite useful in terms of daily tips to improve SAS language skills, blogs and papers.

Blogs of SAS.com – This is a collection of blogs that deal with business analytics, and technical application in various domains and SAS related happenings. With almost 29 blogs, http://blogs.sas.com is one of the better locations to build your perspective in business analytics and not just the technical aspects of writing code. SAS blogs are exclusively maintained by the SAS Institute team of communication people and feature experts from across multiple businesses.

SAS Online Document- SAS online document is the documentation available for everyone by web access. It is like a big book or HTML library and you can view the latest version at http://support.sas.com/documentation/onlinedoc/91pdf/index.html. It is very useful for fine-tuning your SAS language code and discovering extended functionality to your software as well as troubleshooting or debugging programs.

Papers from SAS Global Users Conference Proceedings (SUGI) – This is an archive of papers presented at the annual conference for SAS Users. The conferences have been taking place since 1976, and the papers represent the best innovative uses in the language. They can be accessed online at http://support.sas.com/events/sasglobalforum/previous/online.html.

Thearling’s blog - http://www.thearling.com/ - Kurt Thearling’s website is an excellent place to start off if you want to learn about data mining. Kurt is a veteran in the analytics space with extensive experience in some of the leading analytic companies like Capital One, Dun & Bradstreet and Vertex. Kurt is one of the thought leaders in this space and has authored several books on analytics.

Though the site does not get updated frequently, it is a treasure trove of interesting information. Kurt has written a series of articles/papers that cover topics ranging from the basics of data mining to advanced domain-specific techniques. His articles are written in a clear and concise manner and are easy to understand for beginners as well.

There are many other useful blogs on analytics. If you do a google search for “analytics blogs” or “data mining blogs”, you can find a lot of information. This link has a fairly comprehensive though dated list of data mining blogs: http://www.datamining-blog.com/}

The SAS Institute have a separate publishing division that publishes books and papers. These are books by SAS Press – The SAS Institute have a separate publishing division that publishes books and papers. These are books by SAS Press that is an archive of white papers presented at the annual conference for SAS users. SUGI is a useful resource for any SAS user.

SAS Global user’s conference contains an archive of white papers presented at the annual conference for SAS users. SUGI is a useful resource for any SAS user.
RESOURCES ON R

R is the most popular open source analytic tool in the world. There are several resources for the R language. There are numerous books on R*. The good news is that like R, many of these books are also available for free.

BOOKS ON R

- An Introduction to R PDF HTML - W. N. Venables, D. M. Smith and the R Development Core Team
- R for Beginners PDF - Emmanuel Paradis
- SimpleR: Using R for Introductory Statistics PDF - John Verzani
- The R Guide PDF - W. J. Owen
- Introduction to Probability and Statistics Using R URL - G. Jay Kerns
- The R Inferno PDF - Patrick Burns
- An Introduction to R PDF - Longhow Lam PDF

Some of the books you have to pay for:

- Statistics: An Introduction using R - Michael J. Crawley
- The R Book - Michael J. Crawley
- A First Course in Statistical Programming with R - W. John Braun and Duncan J. Murdoch
- A Handbook of Statistical Analyses Using R - Brian S. Everitt and Ibrsten Hothorn
- A Modern Approach to Regression with R - Simon J. Sheather
- Data Manipulation with R - Phil Spector
- Introductory Statistics with R - Peter Dalgaard
- R for SAS and SPSS Users - Robert A. Muenchen
- R Graphics - Paul Murrell
- R in a Nutshell: A Desktop Quick Reference - Joseph Adler
- There is a lot more documentation on R available at http://cran.r-project.org/other-docs.html

Courtesy stackoverflow.com

OTHER ONLINE RESOURCES

Kdnuggets - www.kdnuggets.com – Established in 1997, this website is a comprehensive resource for anything related to data mining and analytics. Visit this site to learn about news, events and jobs in analytics. They also have links to datasets and training material on analytics.

Analyticbridge – www.analyticbridge.com – Describes itself as the social network for analytics professionals. This is a wonderful site to connect and network within the analytics industry. It is also useful to stay updated on the latest news and events in the field.

LINKEDIN GROUPS

LinkedIn has thousands of groups that are like virtual communities where people of similar interests can share knowledge. Some of the popular analytics related groups are:

- Advanced analytics
- Business analytics
- Customer analytics group
- Global analytics network
- India analytics network
- Kdnuggets analytics and data mix
- SAS analytics and BI
- SAS and analytics users
- Your analytics career

Analyticbridge is a community for analysts. This is a wonderful site to network within the analytics community.

Jigsaw Academy Education Private Limited © 2012
YOUTUBE

These are some must-watch videos on Analytics

How it works: Analytics: http://youtu.be/_HbjsNaUU2A
A brief history of intelligence: http://youtu.be/yVlicIRcAhxc

What can Business Analytics Do for You?: http://youtu.be/uP89kaDU40c

REvolutionAnalytics: This channel has many interesting videos on big data analytics using the open-source software R
SASsoftware: SAS’s channel talks primarily about SAS but also has some good videos on analytics.
Googleanalytics: The official channel for all videos about and related to Google Analytics.
IBMbusinessanalytics: IBM’s youtube channel focusing on analytics and its business application.
Jigsawacademy: Our own channel provides informative videos on analytics, interviews with industry leaders as well as snippets of our lectures.
Analytics can be applied to virtually any business or business process. Whether you are dealing in a niche product, commodity, monopoly or a competitive market, there is potential for analytical competition.

However, some industries are clearly more amenable to analytics than others. If a business generates a lot of transaction data, competing on analytics is a natural strategy.

Financial Services
Retail
FMCG
Pharmaceuticals
Travel
Hospitality and Entertainment

Logistics
Business to Business
Telecom
Sports
Value-add Services

INTERNATIONAL COMPANIES THAT USE ANALYTICS

JT Companies:
- Dell
- HP
- IBM
- Infosys
- Wipro
- Igate
- Tata Consultancy Services
- Cognizant
- HCL

Retail:
- Target
- Tesco
- Shopperstop
- Arvind Mills
- Pantaloons

Consulting Companies:
- Dun & Bradstreet
- McKinsey
- Accenture

Healthcare:
- Novartis
- Reddylabs
- IMS Health

Manufacturing:
- Caterpillar

Telecom:
- Nokia Networks
- Vodafone
- Telecommunications

E-commerce:
- Amazon
- Rediff
- Bharatmatrimony
- Times of India
- Ebay

FMCG:
- HLL
- P&G
- Pepsi
- Coke

Analytics Service Providers:
- Genpact
- Evalueserve
- Ugam Solutions
- WNS
- EXL Service
- Absolutdata
- CrossTab Decision-Craft
- Fractal Analytics
- Meritus
- IMRB
- Modeletrics
- Denuosource
- Mu-Sigma
- Latent View Analytics
- Dexterity
- Pharmarc
- Manthan Systems
- Irevena
- Global Analytics Inc.
- Dunnhumbly

Indian Companies that Use Analytics

Financial Services:
- Amex
- Citibank
- HSBC
- Standard Chartered Bank
- Fair Isaac India

- ICICI Bank
- HDFC Bank
- Bajaj Allianz Insurance
- Bharati Axa Insurance
- Fidelity
Here is a list of 10 most popular analytic tools used in the business world.

COMMERCIAL SOFTWARES

MS Excel: Almost every business has access to MS Office suite and Excel. Excel is an excellent reporting and dash boarding tool. For most business projects, even if you run the heavy statistical analysis on different software, you will still end up using Excel for the reporting and presentation. Latest versions of Excel can handle tables with up to 1 million rows making it a powerful yet versatile tool.

SAS: SAS is the 5000 pound gorilla of the analytics world and claims to be the largest independent vendor in the business intelligence market. It is the most commonly used software in the Indian analytics market despite its monopolistic pricing. SAS software has wide ranging capabilities from data management to advanced analytics.

SPSS Modeler (Clementine): SPSS Modeler is a data mining software tool by SPSS Inc., an IBM company. It was originally named SPSS Clementine. This tool has an intuitive GUI and its point-and-click modelling capabilities are very comprehensive.

Statistica: is a statistics and analytics software package developed by StatSoft. It provides data analysis, data management, data mining, and data visualization procedures. Statistica supports a variety of analytic techniques and is capable of meeting most needs of the business. The GUI is not the most user-friendly and it may take a little more time to learn than some tools but it is a competitively priced product that is value for money.

Salford systems: provides a host of predictive analytics and data mining tools for businesses. The company specialises in classification and regression tree algorithms. Its MARS algorithm was originally developed by world-renowned Stanford statistician and physicist, Jerome Friedman. The software is easy to use and learn.

KXEN: is one of the few companies that are driving automated analytics. Their products, largely based on algorithms developed by the Russian mathematician Vladimir Vapnik, are easy to use, fast and can work with large amounts of data. Some users may not like the fact that KXEN works like a ‘black box’ and in most cases, it is difficult to understand and explain the results.

Angoss: Like Salford systems, Angoss has developed its products around classification and regression decision tree algorithms. The tools are easy to learn and use, and the results easy to understand and explain. The GUI is very user-friendly and a lot of features have been added over the years to make this a powerful tool.

MATLAB: is statistical computing software developed by MathWorks. MATLAB allows matrix manipulations, plotting of functions and data, implementation of algorithms and creation of user interfaces. There are many add-on toolboxes that extend MATLAB to specific areas of functionality, such as statistics, finance, image processing, bioinformatics, etc. MATLAB is not a free software. However, there are clones like Octave and Scilab which are free and have similar functionality.

R: is a programming language and software environment for statistical computing and graphics. The R language is an open source tool and is widely used by the academia. For business users, the programming language does represent a hurdle. However, there are many GUIs available that can sit on R and enhance its user-
friendliness.

Weka:
Weka (Waikato Environment for Knowledge Analysis) is a popular suite of machine learning software, developed at the University of Waikato, New Zealand.
Weka, along with R, is amongst the most popular open source software used by the

WHICH IS THE BEST ANALYTICS SOFTWARE TO LEARN?

The next question that arises, especially for someone aspiring to get into the field of analytics, is "Which is the best analytics software to learn?"
The analytics software market has numerous players – from billion dollar corporations to 1-man shops - offering highly sophisticated, even self-learning platforms to niche, custom-made solutions.

SAS
SAS is undoubtedly the reigning king in the market. Most large global companies and cash-rich businesses tend to go for this software. In India, most medium and large analytics service providers use SAS for predictive modelling and advanced data mining.
There are many different software available from the SAS institute. Some of them are fairly generic and domain agnostic while some are domain-specific for niche purpose. Base SAS is the cheapest and most widely used. It is a code-based tool that uses the SAS language for coding. While some of the tasks like data import can be performed using the GUI, most tasks require a knowledge of the SAS language.
Being a code-based tool, Base SAS is not very easy to learn. However, other than Excel, it is one of the most popular analytics software in the business market. SAS has another tool called "E-miner". E-miner is a GUI based version of Base SAS where you can perform complex data manipulation and modelling tasks just by clicks and drags. E-miner has additional advanced analytics capabilities that are not present in the base SAS version. Capabilities to perform market basket analysis, decision trees, neural networks and support vector machines make e-miner a very comprehensive and user-friendly tool.
The biggest drawback of this software is the high price that the SAS institute insists on charging for it.
Deployment of this tool in a mid-size organization can run into millions of dollars. In India, apart from the large MNC banks like Citibank, Barclays etc., few companies are able to afford this tool.

IBM
With some major acquisitions in the last few years, IBM has suddenly become a lead player in the analytics software market. While COgnOS is largely considered as a business intelligence tool, SPSS and IBM modeler (previously SPSS Clementine) are also big players. SPSS is more popular in the market research field than the business analytics field. IBM modeler is comparable to SAS e-miner both in terms of features as well as pricing and hence has the same pros and cons.

SOFTWARES OF THE FUTURE

R
R is the most popular open-source (FREE) analytics software in the world. Within the analytics community, its popularity easily surpasses that of any other tool. And it is easily the tool of choice for most academicians and scientists. Businesses, however, have been slow to adopt R and a lot of this can be because of intellectual property issues arising out of codes and algorithms written on an open source platform.
While R is again a code based package similar to Base SAS, there are GUIs available for it. The Revolution analytics GUI for enterprise R is an awaited new addition to the analytics software market. The GUI cuts down on the learning time for R and even though it is not free, it still makes for a very cost-effective solution.
Numerous companies have expressed a desire to move to R. They are, however, unsure about training their existing resources and building a pipeline of trained resources for the future.
As a new generation of analysts starts to move towards building R skills, companies will surely move to this platform.
With its ever-increasing capability list, and low/no-cost pricing, is the reigning analytics software for the future.

WPS
WPS is a tool that has been around for some time but has not been able to gain the popularity it deserves. This tool, now acquired by IBM, is virtually a clone of Base SAS. It uses the same SAS language, has a similar interface and identical algorithms. In fact, most of your SAS codes will run on the WPS platform and most SAS users can transition to this tool with a simple, 2-day training.
The software is completely legitimate, having won numerous cases filed by the SAS institute.
WPS is very attractively priced compared to Base SAS saving over 50% in costs for companies if they move from SAS to WPS.
Once IBM gets around to marketing this tool effectively, it seriously dent SAS’s stranglehold on the market. With a pool of SAS trained resources available to them, companies will find moving from SAS to WPS a walk in the park.
With such a short learning and adoption time, WPS is the second most exciting tool for the future.
REGRESSION MODELLING
Regression models are widely used in analytics, as they are the easiest to understand and interpret. Regression techniques allow the identification and estimation of possible relationships between a pattern or variable, and factors that influence that pattern. For example, a company may be interested in understanding the effectiveness of its marketing strategies. It may deploy a variety of marketing activities in a given time period, like TV, radio and print advertising, and social media campaigns. A regression model can be used to understand and quantify which of its marketing activities actually drive sales, and to what extent. The advantage of regression over simple correlations is that it allows you to control for the impact of multiple factors that influence your variable of interest, or the “target” variable. For example, things like price changes or competitive activities also influence a brand’s sales, and the regression model accounts for the impacts of these factors on sales.

Types of Regression Analysis
There are several different types of regression techniques, including:

- **Linear regressions** - Assumes that there is a linear relationship between the predictors (or the factors) and the target variable.
- **Non-linear regression** - Allows modelling of non-linear relationships.
- **Logistic regressions** - Useful when your target variable is binomial (1,0 - Accept or Reject).
- **Time Series Regressions** - Used to forecast future behaviour of variables based on historical time ordered data.

BUSINESS APPLICATIONS
Regression techniques are widely used in various business needs. These models are built to understand historical data and relationships to assess marketing effectiveness, price changes on sales, ranking people on propensity, respond to a direct mailing campaign, to flag potentially fraudulent applications, to assess cross-sell and up-sell opportunities across an existing customer base, to predict attrition or churn, and many more.

DECISION TREES
A decision tree is a predictive model that can be viewed as a tree. The predictions are made on the basis of a series of decision similar to the game of 20 questions. For instance, if a loan company wants to create a set of rules to identify potential defaulters, the resulting decision tree may look something like this:

The most crucial step in creating a decision tree is to identify the right split (question to ask) at each stage. Most algorithms look at all possible split options and calculate the most effective option. The split will result in 2 or more child nodes from the parent node. The same process is repeated at each child node. All possible options are evaluated to identify the best split as per a pre-set criterion.

Although there are many decision tree algorithms, they basically work on 2 principles. One kind works on increasing the purity of the resulting nodes while the other works on ensuring maximum statistically difference from the parent node. The 3 most commonly used methods are Gini, Chi-square and Information gain. The F test is also used when the target variable is continuous like probability or income. The F test is also called the reduction in variance test.

The decision tree is built on a population of 10000 customers. 500 of these customers have defaulted i.e. a default rate of 5%. The purpose of creating a decision tree is to identify data based characteristics that separate defaulters from non-defaulters.

For example, in the first step, the tree divides the population into 2 groups. One group has a default rate of 4% while the other has a default rate of 75%. It is a simple criteria for separation. The first group has customers whose monthly income is at least 1.2 times the monthly instalment. The second group consists of customers with a monthly income <1.2 times the monthly instalment. Yet the second group has a default rate that is more than 200 times that of the first group.

Because of their graphical structure, decision trees are easy to understand and explain making it very popular. Because of this clarity they allow for applying decision trees to business.
more complex profit and ROI models to be easily added on top of the pre-
dictive model.
Their high level of automation and the ease of translating these models into SQL, the technology has also their high level of automation and the ease of translating these models into SQL, the technology has also proven to be easy to integrate with existing IT processes, requiring little pre-pro-
cessing and cleansing of the data.
Apart from predictive modelling, decision trees are useful in other ways too. During the data exploration stage of a project, decision trees are a quick and effective way of understanding impact of numerous and impor-
tant variables. A real life business situation could involve thousands of vari-
ables and decision trees are a quick and easy way of reducing to a manage-
able number.
Decision trees are also very useful in understanding variable interactions. Sometimes two or more variables could combine to become powerful. For example, the target market for Yamaha motorcycles will be males between a certain age group and income band. Just the income, gender or age may not be as powerful in segmenting this market.
Trees can be used to impute missing values. Sometimes trees can help interpret model results that could otherwise be difficult to understand. For example a neural net may generate output that can’t be interpreted eas-
ily. Applying decision trees using the prediction of neural net as the target variable can generate rules that provide broad understanding of the neural net model.

Features of a good decision tree
A good decision tree follows Occam’s razor. It delivers a high level of accu-

racy using as few variables as possible. A good tree is easy to visualize and
interpret. Like all models, it should make intuitive sense.

When to use decision trees
Decision trees are the technique of choice when the problem is binary (0/1, yes/no). It is not the first choice for estimating continuous values. It is widely used in business, especially in situations, where the interpretation of results is more important than the accuracy. Use decision trees when time is critical. Decision trees work the best for initial data exploration in any project.

RANDOM TREE
Random forest is an improvement over the traditional decision tree ap-
proach. The technique involves building multiple trees and then chooses the class that is output by most number of trees – thus taking a mode of all the trees.
Random forest is extremely useful for prediction and classification and produces a high accuracy rate. Like decision trees, it requires minimal data preparation and is unaffected by outliers.

CLUSTERING
Clustering is the process of grouping similar observations into smaller groups within a larger population. It has widespread application in busi-
ness analytics. One of the questions facing businesses is how to organize the huge amounts of data into meaningful structures. Cluster analysis is an exploratory analysis tool which aims at sorting different objects into groups. It analyses the degree of association between two objects; maxi-
mal if they belong to the same group and minimal otherwise.

Features of clustering
Clustering is an undirected data mining technique. This means it can be used to identify hidden patterns and structures in the data without formu-

lating a specific hypothesis. There is no target variable in clustering. In the case above, the grocery retailer was not actively trying to identify fresh food lovers at the start of the analysis. It was attempting to understand the different buying behaviors of its customer base.
Clustering is performed to identify similarities with respect to specific be-
vaviors or dimensions. In our example, the objective was to identify cus-
tomer segments with similar buying behavior.
Cluster analysis can be used to discover structures in data without provid-
ing an explanation or interpretation. In other words, cluster analysis simply discovers patterns in data without explaining why they exist. The resulting clusters are meaningless by themselves. They need to be profiled exten-
sively to build their identity i.e. to understand what they represent and how they are different from the parent population.
In the retailer’s case, each cluster was profiled on its buying behavior. Cus-
tomers in cluster 1 spent a quarter of their total spend on fresh, organic
meals. A marketing campaign focusing on the retailer’s in-house line of frozen meals as well as the speed of the check-out coun-
ers at the store worked well with this audience.

Types of clustering
There are different algorithms available for clustering, and each of them may give a different set of clusters. The choice of a particular method will depend on the objective of clustering, the type of output desired, the hardware, software facilities available and the size of the dataset. Clustering techniques may be divided into two categories based on the cluster structure which they produce:

1. Hierarchical clustering
 - Agglomerative (bottom-up)
 - Divisive (top-down)

2. Partitional clustering
 - K-means
 - DBSCAN

CLUSTERING EXAMPLE
A grocery retailer uses clustering to segment its 1.3MM loyalty card customers into 5 different groups based on their buying behavior. It then adopted customized marketing strategies for each of these segments in order to target them more effectively.
One of the groups was called ‘Fresh food lovers’. These are cus-
tomers who purchase a high proportion of organic food, fresh
vegetables, salads etc. A marketing campaign that emphasized
the freshness of the fruits and vegetables and year-round avail-
ability of organic produce in the stores appealed to this custom-
er group.
Another cluster was called ‘Convenience junkies’. They are people who shopped for precooked/semi-cooked, easy to prepare
meals. A marketing campaign focusing on the retailer’s in-house line of frozen meals as well as the speed of the check-out coun-
ers worked well with this audience.
In this way the retailer was able to deliver the right message to the right customer and maximize the effectiveness of its market-
ing.
A related problem with association rules is that they provide a lot of repetitive results which might not be very useful in practice. To improve the power of a rule is necessary.

Insurance companies infer that a red sports car is more likely to get into an accident than a silver sports car? In this case, your insurance premium is going to be sky-high. In color, then you are even more likely to get into an accident. In general, the color of the vehicle is a very weak indicator if the risk is high.

Our data tells us that if you drive a red car, your insurance premium will be a lot higher than if you drive a silver car. Thus, it is a good idea to avoid red sports cars if you want to keep your insurance costs down.

Similarly, Chennai and Delhi are the cities with the highest chance of getting into an accident. We can now take this one step further and create a matrix of city by model to see which cities and models are riskiest. We can use a 3x3 grid to represent the 9 possible combinations.

The grid tells us that based on historical data, a Tata Indica in Chennai is likely to be a lot riskier than a Hyundai Santro in Bhopal. Thus, a risk based pricing will lead to a higher insurance premium for someone who buys a car in Delhi than someone who drives a car in Bhopal.

This overview provides a description of some of the most commonly used data mining techniques in use today. Please note that this data is not representative of the Indian market. The data is for illustration purpose only.

CAR INSURANCE IN INDIA
In India, the insurance for the car and not the driver. The idea that car insurance companies need to consider a wide range of factors when it comes to insurance pricing is now well established. Only car related factors like the vintage, location etc. are taken into account.

Let us assume a simplistic scenario where we have two factors – the car model and the location. We and want to do a differential pricing strategy based on these two factors.

Location: Is location a factor that affects risk in this case? For example, is a car more likely to get into an accident in a city like Delhi versus a city like Indore? Now Delhi has more than 100 times the vehicle base as Indore. Is it therefore possible that accident rates in Delhi are higher than Indore. And thus, a car bought in Delhi could very well be more likely to get into an accident than a car bought in Indore. Model: Similarly, the car model is. Is a Hyundai Santro less likely to get into an accident than a Tata Indica? Maybe. Without data, we really can't tell.

Insurance Data
We have historical data on 41,096 policies. The policy covers 12 different car models and sixteen locations. We first examine the data by car model. We rank order the car models based on their risk index.

Our data tells us that Ford Figo and Mahindra Scorpio have the highest risk associated with them. Data about other models is available in the file.

CROSS TABULATION EXAMPLE
PAY HIGHER INSURANCE IF YOU DRIVE A RED CAR
Car insurance companies have used risk-based pricing for a long time. Initially, the idea of increasing insurance for cars that are more likely to get into an accident and a lower insurance for cars that are less likely to get into an accident. In the US, for instance, if you are under 25, single and drive a sports car, you are considered a higher risk customer than someone who is, say, 30, married and drives an SUV. And if by chance, your sports car is red in color, then you are even more likely to get into an accident. In this case, your insurance company is going to charge you a lot more.

So how do companies decide who is risky and who is not? How do insurance companies infer that a red sports car is more likely to get into an accident than a silver sports car?

There where analytics comes in. Insurance companies have historical data on hundreds of thousands of cars. They have data on what car filed for an insurance claim (which implies which car got into an accident). They also have other information pertaining to the car, for example their vintage, location, prior history etc.

Car Insurance companies have an interest in getting the best possible insurance premiums. So how do they do this? They use analytics and data mining techniques to make sure that they are charging the right premium for the right car. The idea is to avoid overcharging someone who is not a risk and undercharging someone who is.
learn from experience, they will outperform other techniques by improving over time. However, this is not true. Neural networks learn and improve like other techniques do and they do this in a clumsy one-record-at-a-time manner unlike the other techniques.

When to use neural networks?
The results of neural networks are hard to interpret and explain. In fact, this technique works like a black-box. You can get the right answer but you may not understand how exactly you got it. In light of this, it is best to use neural networks when you have a high degree of familiarity with the input variables as well as the predicted variable and you have a clear idea of what you want to model. Apart from prediction, they can be used for clustering, outlier detection and variable selection as well.

Data preparation is often an involved and complex process. The fields need to be chosen carefully and the data needs to be standardized. The predictor variables need to be numeric and the output is also numeric.

Neural networks do not produce easily understood rules that explain how insight was arrived at. Yet, it is possible to understand the relative importance of inputs into the network by using sensitivity analysis. In many business situations, understanding the comparative importance of inputs is almost as good as having clear rules.

There are many analytic tools such as IBM modeler, Statistica and e-miner that have neural network capabilities. R has many packages for this purpose as well.

WHICH ANALYTIC TECHNIQUE TO CHOOSE?
This is often the hardest question at the start of the analysis. There are numerous different analytic techniques that are used to solve different kinds of problems. While different techniques work well with specific kinds of problems, it is often hard to pick one technique as the best solution in real-world cases. Analysts often try multiple approaches and then use the one that makes the most amount of sense. The choice of technique is often governed by availability as well. Most software packages will offer a sub-set of all the techniques and the analyst has to pick the best option from the available ones.

Some tips on modeling
• It is better to pick a simple, stable, easily explainable model than a complex, less stable and more accurate model.
• It is better to do a quick-and-dirty analysis and implement actions quickly than wait to complete a long and refined analysis.
• It is better to spend more time understanding and exploring the data than building numerous sophisticated models.
CHAPTER 7

CAREER PATH IN ANALYTICS

The Analyst
The entry level role in the field of analytics is that of an analyst. This role offers you a chance to work on projects in a team, building expertise in the domain as well as the analytical tools and techniques. Basic knowledge of statistics is mandatory. You need to be familiar with widely used statistical concepts like p-value, probability distributions, chi-square etc. In addition, knowledge of common analytical techniques like logistic regression, clustering and decision trees is highly desirable.

The Senior Analyst
You will spend anywhere from 18 to 36 months in your first role before moving to the next level i.e. a senior analyst. If you have a PhD, you could directly join at this level. In this role, you will be expected to work independently on projects, even leading some of the smaller ones. You will continue to learn new methodologies as well as build domain knowledge.

The Team Lead
After spending another 2 to 4 years in this role, you will move to a team lead or lead consultant level. At this stage, many people will move into a people management track where they get to demonstrate their leadership and people management skills. However, some people with a more technical bent may choose to become subject matter experts (SMEs) instead. As an SME, you will provide leadership in defining and executing analytic methodologies for specific projects as well as develop new techniques to improve current processes. At this level, you will also be expected to manage most of the communication with clients regarding the projects you are working on.

The Manager
The next role in your career will be that of a manager. As an analytics manager you will be responsible for a team of 5 to 30 people. You may have 1 or more team leads working under you. If you are on the SME track, you may not have a permanent team assigned to you but you would be expected to provide thought leadership on individual projects.

The Associate Vice President
The next role is that of a senior manager followed by the Associate vice president (AVP).

Growth in analytics is largely merit-based. You would need to demonstrate strong quantitative skills and an analytical aptitude in the early years. However, as you move up, communication and people management skills become differentiating factors.
In 2005, a company would hire a graduate or a post-graduate at an entry level position of analyst for about Rs 1.8 lacs per annum. In 2011, campus salaries for analytic roles have been reported at around Rs. 6 lacs going as high as Rs. 12 lakhs at premium colleges.

A senior business analyst with 3 to 5 years of experience would get anywhere between Rs. 8 to 12 lacs per annum. A Team leader or a lead analyst with 5 to 10 years of experience would be making around 10 to 14 lakhs. The salary growth in this field is fairly steep, due to the high demand for experienced professionals.

By the time a person gets to the manager’s level, they usually have close to 10 years of experience and would be commanding a salary in the range of Rs. 12 to 20 lacs.

Campus recruitment in Analytics

Analytics companies recruit students in large numbers from various colleges. Initially the trend was to recruit from colleges like ISIs (Indian Statistical Institutes). However, now companies are increasingly going after MBA graduates. Colleges like Goa Institute of Management have become a hot bed for analytics recruitment.

Companies offer anywhere from Rs. 3 to 8 lacs, for campus placements in most MBA colleges.

Captive vs. Non-captive centres

Captive centres are those that are dedicated to a particular company. For example, those working for HSBC analytics or Dell analytics will work exclusively on the HSBC or Dell business. On the other hand, an analyst working in an analytics service company such as Genpact or Marketelligent is likely to work across multiple businesses and clients. The latter work tends to be looked upon as more rewarding since it is more varied. To make up for this, captive centres usually offer slightly higher salaries than non-captives.

Salaries in Analytics in Bangalore vs. Gurgaon vs. Chennai vs. Kolkata

Salaries across major cities like Bangalore, Gurgaon, Chennai and Kolkata are fairly consistent and differ largely due to cost of living differences. Kolkata has a lot of analytic talent and it is not an expensive city to live in. Hence salaries are a little lower compared to other cities.

How will salaries in Analytics grow in the next 5 years?

The dependence of business on data savvy professionals is expected to skyrocket in the coming years. There is a shift in demand from pure statistical talent to professionals who can apply analytics in the context of a business problem and thus a shift from statisticians and mathematicians to data savvy professionals.

The starting salaries in analytics are expected to grow at 10 to 20% per annum at least for the next 5 years.

Professionals in the analytics industry can expect annual pay hikes of about 15% every year.

Promotions in analytics tend to be largely merit-driven.

Average time to promotion is 18 to 24 months at the lower levels and 2 to 5 years as you move up the hierarchy.
GAURAV VOHRA
Gaurav is an MBA from IIM Bangalore and has over a decade of experience in the field of analytics. He has worked across multiple verticals including financial services, retail, FMCG, telecom, pharmaceuticals and leisure industries. Gaurav likes to work with different analytic tools including Knowledgestudio, SAS, SPSS, Statistica, KXEN, WPS and CART.

SARITA DIGUMARTI
Sarita has a Master's degree in Quantitative Economics, from Tufts University, Boston, and a PG Diploma in Management from T.A. Pai Management Institute, Manipal. She has over 10 years of analytics and consulting experience across diverse domains including FMCG, retail and healthcare. She has worked in both India and the US, helping clients tackle complex business problems applying analytical techniques.

ANSHUMAN ACHARYA
Anshuman is a graduate of IIT-Kanpur and IIM-Bangalore with over eleven years of experience. For the past five years, he has been with Wal-Mart, India operations and worked across finance, strategy, merchandising and supply chain. He has four years of experience consulting global CPG manufacturers and US retailers across formats. His other interests are theatre and training.