

SQL Injection Attack:

Detection in a
Web Application Environment

SQL Injection Attack: Detection Copyright © DB Networks 2012 www.dbnetworks.com

Table of Contents

1 Foreword... 1

2 Background ... 2

2.1 Web Application Environment.. 2

2.2 SQL Attack Overview ... 2

2.3 Applications Open to SQL Injection .. 3

3 The challenge with detection.. 4

3.1 Effective Security .. 4

3.2 Types of attacks .. 5

3.2.1 Tautologies ... 5

3.2.2 Union Query.. 5

3.2.3 Illegal/Logically Incorrect Queries .. 6

3.2.4 Stored Procedure Attacks.. 6

3.2.5 Alternate Encoding Obfuscation ... 7

3.2.6 Combination Attacks .. 7

3.3 Detection at the Web Tier ... 7

3.3.1 Detecting SQL Injection Challenges .. 7

3.3.2 Web Tier Detection in Practice ... 9

3.4 A better way – a Database Firewall.. 9

4 Conclusions ..11

SQL Injection Attack: Detection Copyright © DB Networks 2012 www.dbnetworks.com

Page 1

1 Foreword

The detection of SQL injected into a Web-based application is challenging.

There are several tacks enterprises can take – prevention, remediation, and

mitigation. When implementing prevention and remediation projects, the

enterprise strives to write or deploy highly secure code or encrypt

confidential data. These are not always available options. F o r

e x a m p l e , in some cases the source code may have been developed by a

third party and not be available for modification. Additionally, fixing

deployed code can take significant resources and time and must be prioritized

ahead of projects driving new business. Similarly, projects to encrypt

confidential data found in corporate databases can take even longer and

require more resources. Given compressed development cycles and the

limited number of developers with security domain experience even getting

the renewal project off the ground is a daunting task. And this assumes

that the application source code is even available.

A common approach to detecting these threats is the use of a Web

Application Firewall (WAF). This device sits in front of the Web server and

monitors the traffic into and out of those servers attempting to identify

patterns that constitute a threat (see Figure 1). While this can be effective in

detecting other attacks against a Web application, it has proven seriously

limited when it comes to detecting SQL injection attacks.

Web Application

Firewall

Internet

inline or

out-of-band

Load Balancer

Clients

Web

Servers

Application

Servers

Database

Systems

Figure 1 - Network Placement of a Web Application Firewall

This by no means suggests that a WAF is not a valuable element within a

Web security environment. To the contrary, WAFs provides a number of

benefits including reasonable protection from header injection, XSS

attacks and others that have been recognized by organizations such as the

Payment Card Industry (PCI) and as such should always be considered as

part of a d e f e n se i n d ep t h Web security strategy. However, for SQL

injection prevention organizations are turning to database firewalls.

SQL Injection Attack: Detection Copyright © DB Networks 2012 www.dbnetworks.com

Page 2

2 Background

2.1 Web Application Environment

Before jumping into a discussion on the approaches to detect and protect

against SQL injection attacks, lets first explore the Web application

environment. Web application information is presented to the Web server

by the user's client, in the form of URL’s, cookies and form inputs (POSTs and

GETs). These inputs drive both the logic of the application and the queries

those applications send to a database to extract relevant data.

Unfortunately, many applications do not adequately validate user input with

respect to SQL injection. Attackers use those flaws to attempt to cause the

backend database to do something different than what the application (and

the enterprise) intended. This can include extracting sensitive information,

destroying information or executing a denial of service attack that limits

others' use of the application.

2.2 SQL Attack Overview

SQL attacks are formed by manipulating the input to the application such

that it contains fragments of SQL instructions that are then combined with

the SQL dynamically generated by the application, creating valid SQL

requests. These new, unintended requests cause the database to perform the

task the attacker wants.

To clarify, consider the following simple example. Assume we have an

application whose Web page contains a simple form with input fields for

username and password. With these credentials the user can get a list of all

credit card accounts they hold with a bank. Further assume that the bank’s

application was built with no consideration of SQL injection attacks.

As such it is reasonable to believe that the application merely takes the input

the user types and places it directly into an SQL query constructed to retrieve

that user's information. In PHP that query string would look something like

this:

$query = “select accountName, accountNumber from

creditCardAccounts where username='”.$_POST[“username”].”'

and password='”.$_POST[“password”].”'”

SQL Injection Attack: Detection Copyright © DB Networks 2012 www.dbnetworks.com

Page 3

Normally this would work just fine as a user entered their credentials, say

johnSmith and myPassword, and formed the query:

$query = “select accountName, accountNumber from

creditCardAccounts where username='johnSmith' and

password='myPassword'

This query would return one or more accounts linked to Mr. Smith.

Now consider someone with a devious intent. This person decides he wants

to see if he can get the account information of one or more of the bank's

customers. To accomplish this he enters the following credential into the

form:

' or 1=1 -- and anyThingsAtAll

When this gets pasted into the SQL query it becomes:

$query = “select accountName, accountNumber from

creditCardAccounts where username='' or 1=1 -- and

password= anyThingsAtAll

The injection of the term, ' or 1=1 --, does two things. First, it causes the

first term in the SQL statement to be true for all rows of the query; second,

the -- causes the rest of the statement to be treated as a comment and,

therefore, ignored. The result is that all the credit cards in the database, up

to the limit the Web page will list, are returned and the attacker has stolen

the valuable information he was seeking.

It should be noted that this simple example is just one of literally hundreds

of variations that can be used to accomplish the same goal. Further, there

are many other ways to exploit a vulnerable application. We will discuss more

of these attacks as we delve into the efficacy of various attack mitigation

techniques.

2.3 Applications Open to SQL Injection

There are a number of factors that conspire to make securely written

applications a rarity. First, many applications were written at a time when

Web security was not a major consideration. This is especially true of SQL

injection. Although for most of this past decade SQL injection as an attack

vector has been discussed at security conferences and other settings, the

SQL Injection Attack: Detection Copyright © DB Networks 2012 www.dbnetworks.com

Page 4

attack frequency of SQL injection prior to 2008 was low enough that most

developers were simply not aware.

Alternatively, the application may have been initially written as an internal

application with a lower security threshold and later exposed to the Web

without considering the security implications. Even applications being written

and deployed today o f t e n inadequately address security concerns.

IBM's X-Force project states that reported SQL injection vulnerabilities

jumped 134 percent during 2008 to the number one computer security threat

at 22% of all reported vulnerabilities1. More recently, IBM X-Force reported

that SQL injection and Cross-Site Scripting (XSS) were essentially tied for the

top spot in all reported computer security vulnerabilities2. Note that these

reported vulnerabilities are for packaged applications from commercial

software vendors. Vulnerabilities in custom applications were not reported.

Since this software is generally not as carefully vetted for security robustness,

it is reasonable to assume the problem is actually much bigger.

Interestingly, modern environments and development approaches create a

subtle vulnerability. With the advent of Web 2.0 there has been a shift in how

developers treat user input. In these applications input is rarely provided by

a simple form that directly transmits the information into the Web server

for processing. In many cases, the JavaScript portion of the application

performs input validation so the feedback to the user is handled more

smoothly. This often creates the sense that the application is protected

because of this very specific input validation; therefore, the validation on the

server side is largely neglected. Unfortunately, attackers won’t use the

application to inject their input into the server component of the application.

Rather, they leverage intermediate applications to capture the client-side

input and allow them to manipulate it. Since the majority of the input

validation is bypassed, the attacker can simply enter the SQL fragments

needed to change the behavior of the database to accomplish their intent.

3 The challenge with detection

3.1 Effective Security

The goal of any security technology is to provide a robust threat detection

and avoidance mechanism that requires little or no setup, configuration or

tuning. Further, if that technology relies on learning or training to determine

1 IBM Internet Security SystemsTM X-Force® 2008 Trend and Risk Report, January 2009
2 IBM Internet Security SystemsTM X-Force® 2009 Mid-Year Trend and Risk Report, August

2009

SQL Injection Attack: Detection Copyright © DB Networks 2012 www.dbnetworks.com

Page 5

what is normal or to improve its ability to detect threats, those learning

periods must be short and well-defined. This is needed to expedite

installation and minimize the risk of attacks contaminating the learned

dataset. Keep in mind the longer the learning period, the more likely an

attack will occur and the larger the dataset you need to review to insure that

an attack has not occurred. Finally, as few Web applications remain static,

effective protection must be easy to maintain in the face of on-going changes

to the Web application.

3.2 Types of attacks

In the background section we described a simple attack on a vulnerable

application illustrating how an attack can occur. The general class of attacks

that the simple example falls into can be described as Tautological attacks.

As we noted, this is one of many attack vectors.

The complexity of detecting SQL injection can best be understood through a

variety of examples demonstrating the various SQL injection attack

classifications. This list is not exhaustive but rather provides a sample of the

most common injections seen in real deployments.

3.2.1 Tautologies

This attack works by inserting an “always true” statement into a WHERE

clause to extract data. These are often used in combination with the insertion

of a -- to cause the remainder of a statement to be ignored ensuring

extraction of largest amount of data. Tautological injections can include

techniques to further mask SQL expression snippets, as demonstrated by the

following example:

' or 'simple' like 'sim%' --

' or 'simple' like 'sim' || 'ple' --

The || in the example is used to concatenate strings, when evaluated the

text 'sim' || 'ple' becomes 'simple'.

3.2.2 Union Query

This attack exploits a vulnerable parameter by injecting a statement of the

form:

foo'UNION SELECT <rest of injected query>

The attacker can insert any appropriate query to retrieve information from a

table different from the one that was the target of the original statement.

SQL Injection Attack: Detection Copyright © DB Networks 2012 www.dbnetworks.com

Page 6

The database returns a dataset that is the union of the results of the original

first query and the results of the injected second query.

3.2.3 Illegal/Logically Incorrect Queries

Attackers use this approach to gather important information about the type

of database and its structure. Attacks of this nature are o f t e n used in

the initial reconnaissance phase to gather critical knowledge used in other

attacks. Returned error pages that are not filtered can be very instructive.

Even if the application sanitizes error messages, the fact that an error is

returned or not returned can reveal vulnerable or injectable parameters.

Syntax errors identify injectable parameters; type errors help decipher

data types of certain columns; logical errors, if returned to the user, can

reveal table or column names.

The specific attacks within this class are largely the same as those used in a

Tautological attack. The difference is that these are intended to determine

how the system responds to different attacks by looking at the response to a

normal input, an input with a logically true statement appended (typical

tautological attack), an input with a logically false statement appended (to

catch the response to failure) and an invalid statement to see how the

system responds to bad SQL. This will often allow the attacker to see if an

attack got through to the database even if the application does not allow the

output from that statement to be displayed.

There are a myriad of examples. In fact, the attacker may initially use a bot

to detect a vulnerable web site and then recursively use this class of attack

forensically to learn application and database specifics.

The key point in listing this classification is that WAFs are unable to detect

such attacks if the injections fall outside of the signatures created by the

WAF learning process. As well, the WAF may not be exposed to error

messages that the application (and a Database Firewall) will receive.

3.2.4 Stored Procedure Attacks

These attacks attempt to execute database stored procedures. The attacker

initially determines the database type (potentially using illegal/logically

incorrect queries) and then uses that knowledge to determine what stored

procedures might exist. Contrary to popular belief using stored procedures

does not make the database invulnerable to SQL injection attacks. Stored

procedures can be susceptible to privilege escalation, buffer overflows, and

even provide access to the operating system.

SQL Injection Attack: Detection Copyright © DB Networks 2012 www.dbnetworks.com

Page 7

3.2.5 Alternate Encoding Obfuscation

In this case, text is injected in a manner that avoids detection by defensive

coding practices. It can also be very difficult to generate rules for a WAF to

detect encoded input. Encodings, in fact, can be used in combination with

other attack classifications. Since databases parse comments out of an

SQL statement prior to processing it, comments are often used in the middle

of an attack to hide the attack’s pattern.

Scanning and detection techniques, including those used in WAFs, have not

been effective against alternate encodings or comment based obfuscation

because all possible encodings must be considered.

Note that these attacks may have no SQL keywords embedded as plain text,

though it could run arbitrary SQL.

3.2.6 Combination Attacks

Many attack vectors may be employed in combination:

 learn information useful in generating additional successful injections

(illegal/logically incorrect)

 gain access to systems other than the initial database accessed by the

application (stored procedures)

 evade detection by masking intent of injection (alternate encoding)

3.3 Detection at the Web Tier

3.3.1 Detecting SQL Injection Challenges

Given the large variation in the form or pattern of SQL attacks, it can be very

challenging to detect them from a point in front of the Web server. At this

network location the Web Application Firewall is attempting to identify a

possible snippet of SQL in the input stream of a Web application.

Why is it difficult to detect input injections at the Web tier? Remember, the

WAF is not inspecting the SQL request as sent to the database by the

application tier. Rather, it has URL’s, cookies and form inputs (POSTs and

GETs) to inspect. Inspecting each set of input values, a WAF must consider

the wide range of acceptable input against what is considered unacceptable

for each input field on each form.

Although many attacks use special characters that may not be expected in a

typical form, two problems complicate detection. With no prior knowledge

SQL Injection Attack: Detection Copyright © DB Networks 2012 www.dbnetworks.com

Page 8

about the application it is not possible to know with certainty what characters

are expected in any given field. Furthermore, in some cases the characters

used do, in fact, occur in normal input and blocking them at the character

level is not possible. Consider the single quote often used to delimit a string.

Unfortunately, this character appears in names such as O’Brien or in

possessive expressions like Steve’s; therefore, single quotes are valid in

some input fields.

As a result larger patterns must be considered, which are more

demonstrative of an actual attack, to bring the false positives down to a

reasonable rate. And this is where the problem begins. The choice then

becomes: use a very general set of patterns such as checking for a single

quote or the word “like” or possibly “or” to catch every conceivable attack or

use a more complicated pattern that reduces the false positive rate.

Since there is a reasonable likelihood that general patterns exist in normal

input, the WAF must then inspect all form input (in learning or training

mode) for an extended period of time before it can determine which of these

simple patterns can reliably be used to validate each form and each input

field in the Web application. Considering the complexity, range and limited

structure within the natural language used in forms, it can take a very long

time to ensure that an adequate sample size has been gathered to confirm

that selected detection patterns are not found in legitimate input.

Complicating this further is the fact that some sections of an application are

used infrequently, extending even further the training time. An example

would be business logic exercised according to the business cycle. Add it all

up and you can see this approach requires an extensive time period to ensure

that the learning cycle has adequately considered all the variations of valid

input for each field on each form of the Web application.

Alternatively, as mentioned above, much more complex patterns that are

clearly indicative of an attack can be used. Unfortunately, as we

demonstrated in our discussion of the attack types, the number and variation

of possible attacks is so large that it is impossible to effectively cover all

possible attack patterns. Creating the initial pattern set, keeping up with the

evolving attacks and verifying that they are sufficiently unique as to not show

up in some fields is an almost impossible task. And now, consider that the

applications are also changing and evolving over time, requiring further, time-

consuming learning.

SQL Injection Attack: Detection Copyright © DB Networks 2012 www.dbnetworks.com

Page 9

3.3.2 Web Tier Detection in Practice

So how are WAF’s used in the real world? One way is to use a combination of

approaches, each aimed at reducing the negative effects of the other

approach. These negative effects include limited capability to detect a SQL

injection versus high number of false positives, complex configurations, and

long training times. Specifically, a large set of patterns ranging from

relatively simple to much more complex are used. Some patterns are

configured to be applied to all input sources regardless of what is learned

during training; some patterns are configured such that they will be

removed, for a given input field, if they are contained within the training data.

Some rules and patterns also attempt to classify the range of input by length

and character set, for example, numerical fields.

The WAF is then placed into learning mode and allowed to learn until it is

believed that a large enough set of each input field has been examined to

reduce subsequent false positives. The resulting sets are then reviewed to

determine if the learned set for some fields is considered too small, requiring

additional learning time or manual manipulation. Other fields, whose default

rule set have been reduced too far, are reviewed to determine what hand

crafted rules can be constructed to increase the coverage.

This manual inspection process on top of the long learning cycle, while more

effective than any one approach in isolation, is far from efficient. Further, it

still suffers the weaknesses of an administrator having to make decisions,

configuring a significant number of rule/pattern sets for fields not effectively

configured through training. This can be true even after a substantial

learning period has been used.

This, in a nutshell, is why WAFs have been ineffective in curtailing SQL

injection attacks. It’s self evident, had WAFs been effective the size and scope

of SQL injection attacks would not be increasing year over year.

3.4 A better way – a Database Firewall

So far we have described the method of detecting SQL injection attacks at

the Web tier interface. A more effective and efficient method is to analyze

the actual SQL generated by the application and presented to the database.

The Database Firewall monitors the networks between the application

servers and databases (see Figure 2). Why is this more effective and more

efficient? The simple answer is that while the input into the Web tier has an

enormous pattern set with very little structure associated with each input

field, an application creates a comparatively small set of SQL statements

(ignoring the literal values associated with those statements). In addition,

SQL Injection Attack: Detection Copyright © DB Networks 2012 www.dbnetworks.com

Page 10

the structure of SQL statement lends themselves to structured analysis. Both

of these factors make analysis more determinant than the rudimentary

input pattern validation of a WAF. We will discuss how to deal with the

variation of the literal values (the actual intended user input) below.

Web Application

Firewall

Database Firewall

Internet

inline or

out-of-band

Load Balancer

Clients

Web

Servers

App

Servers

Database

Servers

Figure 2 - Placement of Database Firewall

At the database interface, an SQL statement can be processed in much the

same way the database itself processes it – breaking it down into the

statement structure and separating out the literals. Once this is done the

very first use of any given input will generate the unique SQL statements

associated with that input – as opposed to needing a large sample set to

determine what patterns are not present.

As a result the sample set for learning is already reduced from that required

for a WAF to a much smaller set needed to train a device inspecting traffic

between the application and database. Once a working training set is

developed it can be used to analyze all subsequent SQL statements and any

whose structure differs from the known set can be immediately flagged. By

inspecting traffic at the interface to the database, it is clear which commands

are leveraging stored procedures and it is easy to analyze the strings passed

to stored procedures to determine if they contain any attacks. Several

techniques can be applied in this analysis, such as observing the lack of

delimiting special characters within literal strings.

Although analyzing the stream of SQL statements as described above

provides a significant improvement over a WAF sitting at the Web tier, a true

Database Firewall requires additional capabilities.

As pointed out during the discussion about training a WAF, many of the input

fields within an application may not be exercised often during normal

Page 11

SQL Injection Attack: Detection Copyright © DB Networks 2012 www.dbnetworks.com

Version 20120718 v2

operations. Fortunately, most modern applications build their SQL from a set

of logic that operates much like a code generator. This fact means that, using

a relatively small sample set, it is possible to construct a model of how an

application builds statements. An Adaptive Database Firewall can then use

that knowledge to analyze newly discovered statements and assess their

likeliness of being an attack.

In addition, given the fact that an SQL injection attack must be constructed

out of an existing statement in the application further simplifies the analysis.

If a new statement can be created wholly by inserting a string into the

literal field of an existing statement, then it becomes highly suspect.

Combining these concepts provides a means of assessing any new statement

using algorithms that determine:

 Uniqueness relative to other statements previously seen

 Ability for that statement to have been constructed from a previously

known statement

 Likelihood that the statement could have been generated within the

application itself

Although an Adaptive Database Firewall uses a number of other important

algorithms for analyzing incoming SQL against the learned model (for each

application), the three algorithms highlighted above demonstrate the

substantial value of operating at the interface to the database. No other

approach can come close to the accuracy provided with this architecture.

Furthermore, no other solution can be deployed with as little configuration

and as short a training interval.

4 Conclusions

The efficacy of a security solution is measured by the robustness of its threat

detection and avoidance mechanisms, its ease of setup, configuration or

tuning, and its ability to detect SQL injection attacks with low false positive

rates. Using these measures a true Database Firewall is far superior to a WAF

in detecting an SQL injection attack. This is true because an Adaptive

Database Firewall can be trained quicker, has a lower inherent false positive

level and is capable of seeing through virtually all attack obfuscation

techniques.

In the end, a multi-layer Web security strategy is the best solution, drawing

on the strengths of all relevant technologies. Considering the seriousness of

the SQL injection threat, an Adaptive Database Firewall should be a

prominent element in every solution.

