NUODB

MySQL Pain Points:

e MySQL client-server architecture
does not scale out to meet the
requirements of Internet and mobile
apps.

e Large-scale MySQL deployments
are complicated to set up and
expensive to operate.

e MySQL async binlog replication
delays can cause consistency faults
and compromise high availability.

¢ MySQL application-level
sharding is hard to use, error-prone,
and forces developers to reinvent
query and transaction processing

logic.

A Guide to the MySQL
Alternative

If you are a developer or DBA who has built a rapidly growing application on MySQL, it is now

time for you to investigate a scalable, cost-effective alternative. Read this guide to understand

the common methods of scaling MySQL and why you should examine NuoDB as a simpler,

more scalable path to web-scale. We’ll make it easy for you to migrate.

With the adoption of Internet applications like Facebook, Twitter and thousands of
others, unprecedented volumes of data are being generated. This sea change has driven
software developers and database administrators to seek out new database management

systems (DBMS) capable of easily handling all this data.

Established companies with web-scale apps have developed customized systems to
handle this exponential growth and the corresponding need to scale their databases. For
example, Facebook was initially built as a single monolithic database with MySQL and
sharded over 4,000 times for scalability. Thousands of servers and storage are required
for all these shards. Industry estimates have put the cost to support the Facebook

infrastructure at somewhere north of $1 Billion.

If you are a developer or DBA who has built a rapidly growing application on MySQL, but
you're short that $1 Billion, is now the time for you to investigate a scalable, cost-

effective alternative?

This guide explains the common methods of scaling MySQL and why you should examine
NuoDB as a simpler, more scalable path to web-scale. We’ll make it easy for you to

migrate.

Many apps are built using a programming language like PHP, Ruby, Python, C#, or Java
and the MySQL relational database management system (RDBMS). A load-balancing
front-end directs traffic to a pool of web and applications servers, that in turn connect to
a group of one or more MySQL databases for insert, update and delete read-write
operations, and usually a larger group of caching servers for read-only access. For fault-
tolerance and high availability, MySQL servers are usually configured as master-slave or
multi-master replicas and along with the other servers are hosted in multiple
datacenters run by Amazon, Google, Rackspace or another public or private

infrastructure provider, as shown in the diagram below.

)

eGuide: A Free Guide to The MySQL Alternative
NewSQL Without Compromise™

Fundamentally, MySQL is a client-server database designed in the 1990s to run on a

single server host. It was simply not designed to scale out and run as a fully-distributed

DBMS. As a result, the basic architecture does not meet the throughput, latency and

elastic performance requirements of Internet-scale applications.

The CPU, memory and /0 limitations of a single server host place a hard upper limit on

the workload capacity of each MySQL instance. Performance can scale up only to the

point where it hits the wall imposed by these hard resource limits.

Caching/Application Servers

Caching/Application Servi

ers

Content Management

Slave 1

_—
~_ MysaL
~— Master

T
1
7777777777 e
1 1 1
1 I 1
1
Session Management 1 eCommerce
1
1
i i : - =
: —5
| - -
MySQL Replication | MysaL MysQL
& Failover Utilities | DRBD DRBD
1
1
1
1
1
' e 1
1 1
1 1
: Analytics
1
:
~_ MysaL
MysaL ~ —~ Master

Enterprise Monitor

T
e £ £ =

Slave 1 Slave2 .. Slave N

Figure 1: Typical sharded MySQL deployment architecture

To shard or not to shard, that is the question

Sharding across multiple hosts can solve some of the performance limitations of client-

server DBMS. But when sharding is done in application layer code, as it is with MySQL, it

opens a Pandora’s box of transaction processing complexity and other complications.

Those all fall squarely into the laps of developers instead of being handled in the

database and storage infrastructure layers.

We confess we are not fans of sharding. Our objections include:

\Q

eGuide: A Free Guide to The MySQL Alternative
NewSQL Without Compromise™

1. Itdoesn’t work in the general case. It’s easy to contrive simple cases in which a
database can be readily partitioned into several databases and “scale-out” can be
achieved. A good example are single-record Primary Key lookups/updates. If all you
want to do is GET/PUT a record in the database system then that would work. But the
moment you want to run a QUERY/UPDATE that touches rows in multiple partitions
things start getting very difficult. It is probably very slow and the results are non-
transactional. When someone tells you they have a sharded database solution that goes
very fast you should take careful note of exactly what workloads they are running

against exactly what schema.

2. Sharding locks you into a solution to yesterday’s problem. Today most
organizations do agile development, and it is a tenet of “agile” that you simply don’t
know what the system might have to do this time next year. Limiting the range of
database interactions by sharding the system is a pretty harsh up-front decision. It’s
ironic that at a time when application developers place a high priority on flexible
schemas and other don’t-need-to-plan-ahead requirements for modern database

systems, sharding is still seen as a solution to scaling a database.

3. You no longer have a single consistent database. Not only are there multiple
databases in terms of storage, but the state of the database is not transactionally
managed. Or if it is transactionally managed then you have to use 2-phase commit
protocols, which are both slow and likely to freeze out other activity in the system for the
duration of the transaction. Lack of transactional consistency creates major downstream
costs in relation to data errors and recovery. And of course it increases application

development and maintenance costs.

4. A sharded system has N-times more complexity of administration. You now
have to have N-times more fail-over machines which have to handle complex partial-
failover scenarios. You have N-times more backups, which again are not likely to
represent any actual global state of the system at any known point in time. You have to
upgrade, optimize, tune, modify schemas, etc. for N machines. You also have to manage
security on N machines. Some people enjoy that stuff, but that doesn’t make it optimal.
Consider what needs to happen when N shards are not enough - the sharding algorithm

would need to change in careful orchestration with a data migration activity.

5. Cost, cost, cost! The future is surely about systems that require less and less
maintenance. We want to build systems in which a single administrator can manage
thousands of databases. This already exists for the Web server layer of the stack, the
application server layer, the storage layer, the network layer, etc. Sharding takes the
database layer in the opposite direction. For reasons outlined in (4) above, sharded
database solutions are very costly to maintain. Like most costly things, you should only

do this if you have to. But if you don’t have to then it makes no sense.

\Q

eGuide: A Free Guide to The MySQL Alternative
NewSQL Without Compromise™

There are more modern alternatives to MySQL in the database world that were
specifically architected for web-scale. First, there are the NoSQL data stores with claims
of schema-less developer agility and scale-out performance. These systems do scale and
are suitable for applications that do not require strong transactional consistency.
However developers using NoSQL must undertake the effort to rewrite applications
using proprietary APIs for handling queries and hierarchical data definitions. Sometimes
this means reinventing query and transaction processing in the application code. These
systems also have the disadvantage of not being able to use many of the tools and apps in
the SQL software ecosystems; integration capabilities that are critical for many

enterprise applications.

Before switching to NoSQL consider the following. For example, how many new skills
must your staff learn? How many training courses must you put them in? How many new
tools will you have to acquire if you ditch your entire SQL legacy? These are numbers

that the finance-minded executive will want to quantify.

Zero percent will support all the features usually found in SQL systems, such as data
security, data integrity and high-level query languages. So time and money will have to

be invested to address these points.

The other alternative is NewSQL. The immediate upside is NewSQL’s comprehensive
support for SQL syntax. This new breed of RDBMS is designed to bring the power and
traditional benefits of the old relational model to new distributed architectures and

improve the performance of relational databases at web-scale.

NewSQL DBMS offer all the scale-out features of NoSQL on commodity hardware with
transactional guarantees, like ACID, that are missing in NoSQL. NewSQL solutions are

also compatible with familiar technologies like ODBC and JDBC.

NewSQL joins the classic benefits associated with traditional RDBMS and the scale-out
performance brought to the market by NoSQL vendors. The NewSQL solutions
essentially offer the best of both worlds.

But like any choice, some of the NewSQL solutions require compromises as well.

These compromises include auto-sharding, limited implementation of SQL, high-
availability and many more. It might be tempting to accept these compromises in return
for scale, but that would be akin to taking one step forward and two steps back. For
example, if a database auto-shards your data, does that enable you to avoid accounting

for new shards in your application code? Do updates to table structures automatically

eGuide: A Free Guide to The MySQL Alternative
NewSQL Without Compromise™

\Q

propagate to all of the shards? Sadly the answer is no. Many NewSQL solutions only take

you partway and then leave you to your own devices to figure out the rest.

Standard SQL structured query language. v X v
Compatible with a broad range of tools,

frameworks and application integrations. Large

community of skilled software engineers and

database administrators. Avoids proprietary API

lock-in.

ACID Transactions. v X v
Ensures that updates do not get lost and other

concurrent access anomalies are prevented.

Reduces application layer complexity and

development effort.

Distributed MVCC. X X v
High performance non-blocking access for

operational analytics workloads. Optimistic

concurrency control reduces transaction wait

times and avoids need for application layer

caching. Eliminates delays for ETL and ability to

report near real-time metrics and Key

Performance Indicators.

Elastic scale-out performance. X X v
Provision new database processes to add (or

remove) capacity on demand and start processing

queries within seconds.

Programming languages and frameworks. v v v
Support for Java, Python, PHP, C/C++, C# and

other common languages, LINQ, Ruby on Rails,

Hibernate, Zend, Node.js and other frameworks.

Flexible schemas. X Ve /1
Define data using non-relational information

models. Support derived table types for managing

non-uniform, semi-structured data sets and

inheritance hierarchies.

Side-by-side deployment configurations. v Partial v
Supports gradual transition from MySQL and

avoids forklift upgrades. Compatible with MySQL

replication solutions.

1 Derived tables is a feature targeted for release in 2013.

eGuide: A Free Guide to The MySQL Alternative
NewSQL Without Compromise™

\Q

Storage layer partitioning. X Ve /2
Eliminates complex and error-prone application

layer sharding. Prevents database anomalies and

reduces development and maintenance costs.

Increases [I0PS and database size capacity.

High Availability. Partial Partial v
Out of the box support for fault-tolerant

configuration of database transaction and storage
processing nodes. Avoids Single Points Of Failure.

Geo Distribution. X X V3
Provisioning of domains that span multiple data

centers and cloud-hosting providers, quality of

service and access control parameters for adapting

performance to bandwidth and latency constraints

of WAN environments.

Built-in system management tools. v X v
Graphical, web-based console and APIs for

network and element level operation,

administration, maintenance and provisioning of

the database management system.

Figure 2: Feature comparison table between MySQL, MongoDB and NuoDB

NuoDB leads the industry with a proven NewSQL solution to solve scaling challenges
without sacrificing the safety and familiarity of SQL or making the compromises other
solutions require. In addition to scale-out performance, it also offers zero downtime and
geo-distributed data management. It's an operational DBMS to handle transactions,

interactions and observations anywhere.

Many applications already written in MySQL but in need of sharding in order to scale will
be better off continuing to use SQL. For example, those applications in which query
selection predicates and aggregation clauses are non-trivial and aren’t merely simple
key-value (KV) lookups. Even in the case of single key lookups, database performance
can be optimized to be on par with that of simpler KV data stores, as NuoDB already
demonstrated on Google Compute Engine, Amazon Web Services and other cloud

infrastructures.

2 Partitioned storage manager is a feature targeted for release in 2013.
3 Geo-Distribution is a feature scheduled for release in 2013. Currently available for
early access.

\Q

eGuide: A Free Guide to The MySQL Alternative
NewSQL Without Compromise™

The NuoDB approach blends the benefits of de facto and de jure standards for database
access that are broadly adopted and supported by a wide variety of software applications

and middleware.

For developers who have existing MySQL apps that have, or are about to, hit the
performance wall of client-server DBMS architectures, and developers who are
considering writing new web scale MySQL apps, NuoDB offers a less risky approach than
NoSQL alternatives. NuoDB provides a migration path that preserves the desirable
elements of extended relational databases and leaves behind the non-scalable aspects of

legacy DBMS architectures.

Let’s take a look at the architecture of an application using the NuoDB DBMS:

Transaction Processing

MySQL
™ -
% -
Replication ~r
~——
NuoDB # 2
Console |
% oe
[| | \

SAN

&,
o

Session and Content
Management, eCommerce

DASD,HDFS,EBS,S3

Figure 3: Typical NuoDB deployment architecture with MySQL data replication

Adding or removing NuoDB database transaction processing or storage management
nodes in response to changes in application workload demand is straightforward and
does not require complicated orchestration of provisioning and system management
tasks, nor the lengthy startup times required to bring a new database server on-line.
When additional NuoDB database processing nodes are started, they discover and peer
with other NuoDB nodes and within a few seconds are ready to accept connections to
run application queries. Compared to the MySQL deployment architecture, we've
eliminated additional replication hardware and software components that are
provisioned and standing idle for High Availability and all the host machines in catching
layer used for off-loading read-only queries from MySQL servers. This streamlined,
distributed DBMS architecture greatly simplifies the jobs of developers and operations
staff.

N

eGuide: A Free Guide to The MySQL Alternative
NewSQL Without Compromise™

Scale out...more... YCSB benchmark results

The Yahoo! Cloud Serving Benchmark (YCSB) is an open-source performance evaluation
tool and framework for cloud-based OLTP workloads. NuoDB recently demonstrated
throughput of over 1.35 million transactions per second on YCSB workload B (5% writes,
95% reads), while maintaining sub- millisecond latencies, on a configuration of 32
NuoDB transaction engines running on Google Compute Engine (GCE) cloud
infrastructure, as shown on the following chart:

» CDMS Demonstrator
NUODE

[ECSorIo o p——

o o o o Transactions per Second

ko2t rackpez rackp2y ki rack2s 1,350,028
i i 400000 -

fackoZ rackp27 racko28 rack g1 rack ps2

1200000

1000000

g

500000 -|

Transactions per Second (s)

Transactions per Second: 1350028 400000
Latency: 8

Latency i Microseconds

3 1200000 450 200000

o
H o o 73813
1z 4 8 12 o Time

— TansactonsporSecond. — M TPS Targel

Cimn smn tomn zome (1G]

Figure 4: NuoDB YCSB benchmark results demonstrate throughput of 1.35M TPS

Another benchmark that illustrates NuoDB’s linear scale-out of more complex queries
and write-intensive workloads is DBT2, an open-source implementation of the TPC-C
benchmark that simulates a traditional commerce OLTP workload. The following chart
shows the performance of NuoDB running the DBT2 New Order transaction on a private
cloud of commodity servers.

\Q

eGuide: A Free Guide to The MySQL Alternative
NewSQL Without Compromise™

400,000
350,000

300,000
250,000 5 Txn Engines

200,000 10 Txn Engines

NO TPM

20 Txn Engines
150,000

100,000
50,000
| . - Jo—

30 Warehouses 60 Warehouses 120 Warehouses

Figure 5: Performance results for New-orders measured in Transactions Per Minute
[NOTPM] for 30, 60, and 120 Warehouses based on 5, 10, and 20 NuoDB transaction

processes. All tests were performed with no simulated “think” time.

An ideal DBMS should scale elastically, allowing new machines to be introduced to a

running database and become effective immediately.

NuoDB’s distributed three-tier architecture is the foundation for just that kind of scale-
out performance. It decouples management, transactions and storage, meaning each tier
can scale a single, logical database elastically. It scales linearly to improve transactions
per second performance and handle both concurrency and data volume. Out and in; by

simply adding or removing processes.

Plus, NuoDB’s geo-distributed data management lets you build an active/active, highly
responsive database for high-availability and low latency. By bringing the database
closer to your customers, they benefit from faster response times and you eliminate the
need for complex replication, backup and recovery schemes. This functionality is the

Holy Grail of databases.

Here are examples of NuoDB customer applications that have been migrated from
MySQL to NuoDB:

215 First Street
Cambridge, MA 02142
+1(617) 500-0001
www.nuodb.com

© 2013 NuoDB, Inc,, all rights reserved.

eGuide: A Free Guide to The MySQL Alternative
NewSQL Without Compromise™

¢ Social marketing sentiment analysis and quantitative metrics for campaign
optimization. Running on AWS, large multi-TB databases. Large working set read
performance did not scale with MySQL.

¢ Mobile Telecom - location sharing smartphone app. Required very fast spin up
and spin down of database nodes. MySQL monolithic architecture required too much
time to configure and provision additional instances and could not meet SLA metrics
during application demand spikes.

¢ Internet - display advertisement serving. Geo-distributed performance did not
scale with MySQL. Considered NoSQL data stores, but did not want to give up SQL and

transactional semantics.

Today’s database market requires fast response, constant availability and the ability to
scale to match app builders’ dreams. The fact is that application loads vary a lot. So the
ideal system scales dynamically, allowing new machines to be introduced to a running
database and become effective immediately. On the other hand, a database application
should not require even one dedicated machine if its load does not justify the cost in

hardware, power, and heat of even a single machine.

At the same time, the system must provide the traditional guarantees: committed
changes are durable, regardless of failures, even multiple failures. Concurrent
transactions cannot overwrite each other’s changes, even if they run on separate
machines. Transactions must have a consistent view of their data and succeed or fail as a

unit.

A database for this new market must run on hard iron, virtual machines, private clouds,

public clouds, and across clouds. It must be designed for continuous operation.

That's a lot to ask for but it exists. Only NuoDB offers this unique combination of features.

It's NewSQL without compromise.

For more information and a free download
*Download the free NuoDB developer edition at http://www.nuodb.com /register/
* Grab drivers from GitHub at http://nuodb.github.io/

* Visit our Developer Center at http://www.nuodb.com/devcenter/

The following are trademarks of NuoDB, Inc.: NuoDB, Nuo, NewSQL Without Compromise, ™ ME
The Elastically Scalable Database, and NuoConnect. | I l | O I =%

