
An Erasure Coding Performance Metric for Windows 8

Sarah Edge Mann, Michael Anderson, and Marek Rychlik

Abstract
Electronic data itself may be ethereal, but the devices that
store it and transport it are physical. As such, when elec-
tronic data travels in space and time over physical devices,
it is subject to noise and deterioration. The standard so-
lution to eliminate this noise is Reed-Solomon coding,
typically implemented in hardware and used today in ev-
ery data storage device. We present a measurement of
Reed-Solomon coding in a new application: a Windows
8 storage device driver. This software application brings
the benefits of noise elimination much closer to the pro-
ducer or consumer of the data, and has surprisingly good
performance, even for very strong encoding. Our results
challenge the common assumption that standard Reed-
Solomon codes, realized with Galois Field multiply oper-
ations, are too computationally expensive to be effectively
deployed in software. We also include a brief general dis-
cussion of Reed-Solomon codes and of the computational
costs of ECC.

1 Introduction
Reed-Solomon codes are used throughout the communi-
cation and storage industries to protect data from noise.
All non-volatile storage devices, most server DRAMs and
all disk arrays use Reed-Solomon or Reed-Solomon-like
codes to detect and correct data errors. These codes are
often called Erasure Codes or Error Correcting Codes
(ECC), both of which have the same mathematical basis.

Noise that affects electronic data has many sources, in-
cluding cosmic rays, reported and unreported device or
communication failures, human error, power problems,
physical media degradation and many others. As distance,
time, and data volumes increase, so does this noise and
deterioration. Unless a methodology is applied to com-
pensate for this noise, electronic data will be lost in the
noise, rendering it useless.

To understand the noise cancellation and regenerative
effects of ECC in real applications, we suggest that it is
important to consider two separate metrics. The first met-
ric is the distance in space and time between the creation
of the data and the protection of the data. As long as the
data remains unprotected, it can be corrupted in an unde-
tectable manner. The second metric is the strength of the

codeword. The stronger the codeword, the more noise can
be eliminated.

An ideal data communication or storage system would
apply ECC protection as close as possible in space and
time to the creator of the data, remove ECC protection as
close as possible to the data consumer, and would sup-
port very strong codewords. This combination of features
would best protect the data from the inevitable noise it
encounters in its lifecycle.

For application data, the creator or consumer of the data
is an application program, executing on an application
processor. In the past, application processors have been
too expensive to apply to anything but application execu-
tion. However, in modern processors with multiple cores,
these resources are often underutilized. This is primar-
ily because legacy applications were designed for a single
processor, and most processors sold now are multi-core.

From a space and time perspective, a core in an ap-
plication processor is an ideal location for ECC-based
noise elimination. The distance in space and time between
the application data creation and the ECC logic is nearly
zero. The physical distance may actually be zero, since
the same processor that the application used to generate
the data and initiate the transfer could be used to encode
or decode the ECC.

In Windows 8, we accomplished this near-zero distance
noise elimination solution with a software device driver
implemented within a Windows 8 device driver model
called StorPort virtual miniport [7]. Our implementation
is an autonomous piece of software apart from using the
Microsoft driver framework. The driver acts on behalf of
the application that produces the data, and encodes this
data with ECC prior to storing it on a local or remote
memory system. When an application reads the data in
the future, this same driver applies ECC logic to eliminate
any noise that was introduced as the data travelled through
space and time.

For Windows 8 applications that use this ECC driver,
the ECC encoding and decoding provides strong data pro-
tection and noise immunity. The ECC logic ensures that
all data communication paths and memory devices be-
tween from the application processor through the storage
are fully protected from both reported and unreported data
errors, regardless of their source.

For example, if a cosmic ray from deep space caused
a soft failure of the computer’s DRAM, the ECC logic

1

would detect it and correct it, without requiring any addi-
tional hardware. Or, if a flash device media degraded to
the point that a sector was unreadable, the driver would
use ECC to recover the data. With a thoughtful arrange-
ment of the codewords and devices, even full device fail-
ures can be considered “noise”, and data can be recovered
in their absence. With strong codewords, multi-device
failures could be tolerated without requiring immediate
service. This is very strong application data protection,
especially compared to typical Windows 8 desktop sys-
tems without any DRAM ECC.

This paper provides measurements of and discussions
about such a Windows 8 ECC device driver as well as
a discussion of the coding theory on which the driver is
built. This driver implements ECC-protected memory that
can be benchmarked with standard tools such as the ATTO
Disk Benchmark and Intel’s IOMeter [1, 8]. By vary-
ing the strength of the ECC codewords and the number
of cores used by the driver, we present a series of mea-
surements that show Windows 8 can provide very high
noise immunity for application data using standard Reed-
Solomon codes based on Galois Field multiply operations.

2 Our Windows 8 Software ECC
In the current secton we discuss a set of ideas and ECC
technologies which we call jointly Virtual ECC. Subse-
quently, we introduce our software implementation of Vir-
tual ECC for the new Windows 8 operating system from
Microsoft.

The current section adequately describes our main
result for those readers who are familiar with Reed-
Solomon codes and their application to RAID. However,
an interested reader will find the background material or-
ganized in several additional sections of this paper. Here,
occasionally we make a (forward) reference to this ma-
terial, hopefully with minimal distraction to an expert
reader.

2.1 Virtual ECC

The concept of Virtual ECC is quite simple: we mean an
approach to data protection in which extra bits are added
to the data as early as possible after data inception, and
stored as its integral part forever. The virtuality of this ap-
proach alludes to the fact that the manner in which these
extra bits are chosen is not fixed by a single physical hard-
ware implementation but may be adjusted to suit the vary-
ing needs of different applications. Strong encoding may
be used in some cases, and weak encoding in others, all
on the same hardware.

This contrasts with the typical hardware-based ap-
proach. Hardware-assisted ECC typically works as fol-

lows:

1. Dedicated hardware encodes the input data by adding
a fixed number of redundant bits on the fly when the
data reaches the hardware device.

2. The extra bits are removed when the data is shipped
off, typically to another hardware device which in
turn may add ECC bits of its own.

3. When the data travels between devices through some
interconnect fabric, other bits, usually much weaker
than ECC, may or may not be added or checked de-
pending on the technology or vendor.

Thus, understanding the actual data protection as data
moves through a system may be very complex. As a re-
sult, the probability of data loss is dominated by the weak-
est link, which likely will remain unknown until after a
failure occurs.

By comparison, Virtual ECC deals with these un-
knowns in advance, with a scheme that matches the in-
tended use and environment of the data. For data stored
on very large systems, commonly called cloud infrastruc-
tures, very strong codewords can be applied to data, and
then spread out between devices, device racks, facilities,
even continents. For small systems, like home storage for
multimedia libraries, weaker codewords would suffice.

Virtual ECC has the power to transform the lowest re-
liability devices into high reliability devices, and to elim-
inate another important problem that occurs frequently in
large systems — silent data corruption. Since the protec-
tion bits are generated early in the life of the data, and stay
attached to the data throughout its lifecycle, they guaran-
tee the correctness of the data. Generating and checking
ECC near the application eliminates all practical possi-
bility of silent errors in any device that the data may en-
counter.

For example, here is a minimal list of devices that
data will encounter on a typical computer: CPU, DRAM,
PCI, Local Storage Controller, Remote Storage Con-
troller, Flash, Tape or Disk media, and finally Intercon-
nects (SATA, SAS, FC, IB). Strikingly, most computers
use DRAM with no ECC protection. However, by using
Virtual ECC, they are transformed into devices with much
higher reliability than computers with hardware ECC.
With Virtual ECC, data is protected from the moment the
message is transformed into a codeword, and remains pro-
tected, with a known codeword strength, until it is used
again. This protection covers every device the data en-
counters during its lifecycle. Corrupted codewords, even
those silently corrupted, are easy to detect and correct re-
gardless of the correctness of the devices used to store or
transport the data.

We can also point to the following advantages of Vir-
tual ECC over current ECC schemes:

2

1. Strong codes are millions of times more reliable for
the same overhead or cost.

2. The ability to upgrade the reliability of existing hard-
ware as well as future hardware at a software-only
cost.

3. High configurability — ECC protection can be
matched to the data and the environment.

4. Device lifetimes can be extended — ECC can be in-
creased as devices deteriorate.

2.2 Our Virtual ECC Benchmarks
Virtual ECC is arguably the best solution for compre-
hensive data protection, and our implementation of it un-
der Windows, in addition to the general benefits of Vir-
tual ECC, offers additional advantages. They are rooted
in the modern OS and hardware technology:

• A new, “software friendly” ECC algorithm.

• Leveraging of multi-core architecture.

• Faster processing than hardware-based alternatives.

We emphasize the light load on the CPU, which should
become even ligther with new generations of processors.
Thus, we have achieved unsurpassed flexibility without
taxing hardware resources. The algorithm used by us and
its computational complexity are covered in Section 4.

By writing the driver, we have demonstrated that the
software implementation of ECC is in practice faster than
a conceivable hardware implementation. Our ECC lever-
ages the fastest, superbly tested, and most computation-
ally advanced component of the system, the CPU ASIC.
This is the most highly optimized part of a computer sys-
tem and most capable for implementing advanced math-
ematical algorithms. Thus, by utilizing the CPU we are
able to cash in on the tremendous resources which went
into its development.

In contrast, the typical peripheral hardware design is
subject to many compromises, and as a result ECC runs at
a fraction of the speed possible with the CPU. By its na-
ture, the CPU development enforces much higher quality
assurance than a typical peripheral would.

Since in our Virtual ECC approach ECC is an integral
part of the data, it can be easily implemented utilizing new
infrastructures, based for instance on cloud storage. We
may either replace or add to the existing ECC. Given that
the reliability of the underlying storage system is avail-
able or can be estimated, we may estimate how much extra
data protection we need, to balance the extra cost involved
against our data protection need. RAID failure modeling
may be used by the designer of the RAID system to deter-
mine the major parameters of the data protection, such as

the ratio of check to data drives. Further information on
RAID failure modeling is provided in Section 5.

In Table 1 and Table 2 we present performance mea-
surements of the StorPort virtual miniport driver on sev-
eral hardware configurations. The measurements come
from the industry-standard Disk Benchmark software
from ATTO Technology, Inc [1]. We tested write and read
operations with a varying number of bytes until sustained
throughput was achieved. We also took steps to ensure
that we measure the cost of ECC only, in isolation from
other factors, such as the drive speed. This isolation was
achieved by interposing a write-back cache in front of the
real hard drive cache. The cache was sufficiently large
to ensure the cache was not flushed before our measure-
ments are performed. Although other costs are captured in
this measurement, such as the cost of the DRAM to CPU
data movement, they should be considered negligible as
compared to the cost of performing ECC operations.

Figure 1: Screen capture of the GUI of the ATTO bench-
marking software with sample measurements of the Stor-
Port virtual miniport driver.

When configured with an extremely strong codeword,
64 data bytes + 64 check bytes, we achieved write speed
exceeding 600MB/sec and read speed of over 350MB/sec.
With a weaker codeword, 64 data bytes + 10 check bytes,
the throughput is in excess of 3GB/sec. In all experiments,

3

we utilized 2–4 cores1. As usual, the performance analy-
sis of a real computer system can only be known approx-
imately. Thus, the sustained throughput rate for 10 and
64 check drives do differ roughly by a factor of 5. From
the point of view of reliability (see Section 5 for more
details on this subject), the difference still may be jus-
tified in some demanding applications. The difference in
codeword strength between 64 and 10 check bits is several
orders of magnitude in probability of data loss, and may
be well worth it when preservation of data is paramount.
The reader may also note somewhat slower read perfor-
mance, which is not accounted for by theoretical opera-
tion counts.

Table 1: The driver write/read performance: 64 data
bytes, 64 check bytes.

Hardware configuration
Volume Celeron Pentium i3 i5 i7
of Data 1.6Ghz 2.2Ghz 2.4Ghz 2.7Ghz 2.2Ghz

Write Performance (transfer rate in kiB/sec)
512b 1445 1955 1959 2740 2540

1k 2774 3957 3919 5562 5132
2k 5508 8070 7820 11377 10541
4k 11959 16181 16658 24035 22415
8k 24576 33557 31432 55158 51447

16k 59076 79897 84423 150226 144340
32k 116260 161729 210348 467021 453199
64k 121972 173399 225633 482527 495103

128k 125136 181594 235121 498789 496325
256k 130043 171095 243154 662886 597922
512k 125144 172442 238609 666092 721753

1024k 127522 178956 239140 664444 708103
2048k 129366 180024 238080 661171 669713
4096k 134892 216480 242379 651542 651542
8192k 125144 173557 268435 651542 614268

Read Performance (transfer rate in kiB/sec)
512b 914 1270 1213 1798 1714

1k 1808 2528 2415 3648 3479
2k 3624 5190 5044 7492 7211
4k 7430 10702 10626 15906 15321
8k 15641 21609 21353 36883 35703

16k 37321 52461 53844 104162 104667
32k 76249 110461 135628 300452 296023
64k 80669 116260 140094 312125 312125

128k 81035 122819 143643 321900 325825
256k 90697 112649 149340 418961 367121
512k 81344 114227 145000 418496 448460

1024k 80249 116711 147492 420368 443171
2048k 85353 122016 151944 417566 426088
4096k 95520 112081 150524 414800 405841
8192k 82090 114961 149963 415718 387166

1The precise count of resources such as cores and hardware threads
is complicated by such technologies as hyperthreading, where some of
the computational resources are shared; thus, we would rather think of
the capabilities of a system as a whole than the particulars of the CPU
architecture.

Table 2: The driver write/read performance: 64 data
bytes, 10 check bytes.

Hardware configuration
Volume Celeron Pentium i3 i5 i7
of Data 1.6Ghz 2.2Ghz 2.4Ghz 2.7Ghz 2.2Ghz

Write Performance (transfer rate in kiB/sec)
512b 6632 8832 6415 10544 9631

1k 13789 17408 12579 21089 18130
2k 27068 32768 26295 41867 37376
4k 47300 66228 53115 83284 77596
8k 93499 120356 110235 164526 169387

16k 189665 272531 268435 342879 376504
32k 356554 523182 648269 897754 930968
64k 438645 621217 754581 1576887 1823763

128k 487893 675162 891806 2274442 2191108
256k 507391 691666 995109 3200232 2796029
512k 511305 689904 1022611 3314017 3730102

1024k 522502 713324 1010580 3338749 3768675
2048k 522502 691519 984482 3277737 3587998
4096k 511305 703045 986895 3146250 3347075
8192k 510091 685102 1115746 3079309 3271974

Read Performance (transfer rate in kiB/sec)
512b 5409 7132 5081 8151 6843

1k 11008 13721 10290 16262 13789
2k 21961 26800 20127 32524 28089
4k 38814 49192 41261 66774 58658
8k 78223 107531 83284 135251 138313

16k 159695 231204 210457 327419 350177
32k 308623 457708 496325 758978 1034229
64k 358454 515051 590595 1514190 1597065

128k 392254 555745 678416 1879048 1830975
256k 402653 565640 745924 2577017 2329764
512k 407602 588451 759722 2625285 3004874

1024k 418496 586388 747384 2664371 2960685
2048k 407602 580749 743931 2631720 2850055
4096k 399655 600974 745654 2591332 2763306
8192k 403229 560538 745385 2464543 2730981

2.3 Operation Count vs. Real Performance
Let us focus on the 64 data + 64 check bytes configu-
ration, achieving write speed of 600MB/sec. Based on
our knowledge of Reed-Solomon coding, we find that the
number of Galois field operations required to generate a
codeword from a message is equal to the number of check
bytes per each byte of the input message. In Section 4 we
provide the theoretical basis for this claim. Since in Read-
Solomon coding of RAID check bytes map 1:1 to check
drives, this number is also equal to the number of check
drives. This means that each of the 64 bytes of inputs con-
tributes 64 Galois field operations to the cost of creating
the 128 byte codeword. 600MB/s translates into 6× 108

bytes of input per second, or 6× 108× 64 = 384× 108

Galois operations per second. We feel that this is a very
important metric of system performance and justifies giv-
ing it a name; we propose GalOPS (Galois OPerations
per Second). We may think of GalOPS as analogous to
FLOPS which characterizes floating point performance.

4

In Section 4 we included further discussion of this metric.
In our example the performance of our driver suggests

that the performance of our system is 38 GigaGalOPS.
Based on the clock speed of 2.4GHz, we perform about
16 Galois field operations per clock cycle, or 4 Galois op-
erations per clock cycle per processor, given a quadcore
system. These estimates are imprecise, but it is certain
that we must be able to perform at least 4 Galois oper-
ations in one clock cycle in each processor to justify the
measured data. Using another method based on observ-
ing hardware performance counters, we indeed confirmed
that this simple estimate of the actual performance is ac-
curate (see Section 2.4). It is clear that the resulting per-
formance is due to both multithreading and utilization of
the pipelined architecture of the modern CPU.

When we use the codeword of 64 data bytes with 10
check bytes (still very strong protection), the I/O scales
up by a factor of 5 but the number of Galois operations
is 6.4 times smaller, resulting in approximately the same
GalOPS measurement. This suggests that GalOPS indeed
are a measure of the performance of the system, and not
of the particulars of the algorithm used.

2.4 Measurement Methodology Details
For those readers who would like to more closely follow
what our process, in this section we include additional de-
tails of our approach. They can be skipped without affect-
ing the ability to understand the rest of the paper.

As we mentioned, Windows supplies a driver model
StorPort virtual miniport, as well as examples to aid pro-
grammers who develop drivers [7]. The StorPort vir-
tual miniport model itself was used to develop our Vir-
tual ECC driver, but we did not use the Microsoft example
code.

Inside this driver model, Windows also provides a set
of measurement tools that can gather real time events at
high speed and with low overhead. These tools are called
Event Tracing for Windows (ETW). We used these tools to
gather real time performance information about the driver
so we could understand how it behaved in a real operat-
ing system environment, and verify actual performance
against modeled results.

Using these tools, we gathered detailed measurements
of each IO that the benchmark generated as it was ex-
ecuted by the driver, and saved these measurements for
later analysis. To bound the scope of our measurements,
we focused on a particular processor and transfer size,
though this same technique could have been applied to
any processor or transfer size.

For each IO, we recorded the total execution time. In
addition, we recorded three important events to under-
stand performance at a more detailed level:

1. The time that the cache was searched and locked;

2. The time that the data was transferred to or from the
benchmark to the cache;

3. The time it took to compute the ECC bytes for the
request.

A typical 32k write request on an i7, for example, took
1 microsecond or less to search and lock the cache, about
6 microseconds to move the data from the ATTO bench-
mark memory to the driver cache memory, and about 400
microseconds to compute the ECC. A typical read request
had a similar cache search and lock time, but a larger time
(about 600 microseconds) to compute the ECC. The cause
for this difference should be further investigated.

We included two charts, Figures 2 and 3, which show
the ECC computation time in a 64 data bytes + 64 check
bytes codeword configuration for a 32k IO. The first chart
shows the time required to regenerate lost data using ECC,
the second chart shows the time required to generate the
parity bytes for a write. Though it is clear from these
measurements that generating parity is faster than regen-
erating data, the cause should also be further investigated.

●●●●

●

●
●
●

●

●●
●
●●

●

●

●
●
●
●
●
●
●
●●

●

●

●●

●

●

●●
●

●

●

●●

●

●●

●

●●
●
●
●

●●●

●

●●

●

●

●

●

●

●

●●
●●●

●

●

●
●
●
●
●

●

●●●●
●
●

●●●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●
●
●

●

0 20 40 60 80 100

50
0

10
00

15
00

20
00

25
00

Sample Id

R
ea

d
tim

e
(m

ic
ro

se
co

nd
s)

0.
5

1.
0

1.
5

G
al

oi
s

O
pe

ra
tio

ns
 p

er
 C

lo
ck

 C
yc

le

● Read time
Galois Ops Per Clock Cycle

Figure 2: Measurements of the first 100 read operations
@32k, 64+64 codeword. The lines are smoothed data ob-
tained using the LOWESS method.

3 Review of Coding Theory
In this section we discuss the essentials of coding theory
that allow for ECC in computing systems. Here, we will
limit our discussion to linear block codes over finite fields
focusing on Reed-Solomon-like codes in particular. These
codes are particularly well suited for data protection in

5

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●
●
●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●
●
●
●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●●●
●

●
●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●
●
●
●

●

●
●
●

●
●●

●

●

0 20 40 60 80 100

25
0

30
0

35
0

40
0

45
0

50
0

Sample Id

W
rit

e
tim

e
(m

ic
ro

se
co

nd
s)

2.
0

2.
5

3.
0

3.
5

G
al

oi
s

O
pe

ra
tio

ns
 p

er
 C

lo
ck

 C
yc

le

● Write time
Galois Ops Per Clock Cycle

Figure 3: Measurements of the first 100 write operations
@32k, 64+64 codeword. The lines are smoothed data ob-
tained using the LOWESS method.

computer systems. A more detailed discussion of coding
theory, linear block codes, and Reed Solomon codes can
be found in standard texts on this subject [5, 12, 16].

In Reed-Solomon ECC, data originates as a string of
bits which are first grouped into characters consisting of
l bits of data; l = 8 is typical and corresponds to byte-
sized characters. These characters are then grouped into
k character messages. By adding an additional m = n− k
carefully chosen characters to a message, a group of n
characters (the codeword) is created. Thus codewords are
somewhat redundant, containing more characters than the
message. The set of all possible codewords constitutes
the code; this set is dependent on the manner in which the
redundant characters are chosen.

The codeword is then transmitted or stored for later use
and in the process is subjected to random errors. We re-
fer to this codeword post storage or transmission as the
received word. Due to the redundancy, the codeword and
thus the original message may be recovered from the re-
ceived word if the number of errors is not too great. The
rate R = k

n of the code measures the degree of redundancy
in the codeword. R = 1 indicates there is no redundancy
and no error correction capacity, and R near zero indicates
there is a lot of redundancy and thus error correction ca-
pacity, but little information content.

3.1 Data Encoding
The essence of the problem of ECC is how to choose
the redundant characters such that a message may be re-

covered from a received word in the presence of a large
number of errors in a computationally efficient manner.
We accomplish this using a Reed-Solomon-like encoding
scheme reliant on linear algebra. We view each charac-
ter as an element of the finite (Galois) field GF(2l) and
thus each message as a vector in GF(2l)k. All arithmetic
is performed over this finite field.

We call a matrix F ∈GF(2l)n×k an information disper-
sal matrix if any k× k submatrix of F is invertible. F is
systematic if the first k rows of F form the k× k identity
matrix. Let ~d ∈ GF(2l)k be a message and F ∈GF(2l)n×k

be a systematic information dispersal matrix. Then ~c =
F~d is a codeword. Since F is systematic, the first k char-
acters of~c are the k characters of ~d. The last m characters
of ~c are redundant or check data. There are a number of
ways to construct a systematic information dispersal ma-
trix. See [13] and [14] for one one example. Such a matrix
may be constructed with as much redundancy as desired
subject to the constraint n ≤ 2l , and this matrix uniquely
defines the code.

3.2 Error Detection

It is easy to verify the integrity of data in this scheme.
Given a length n received word, interpret the first k char-
acters as a message. Use this message to recalculate the
check data, as described above. If the computed check
data matches the check data portion of the received word,
then the received word is a codeword and, with high prob-
ability, the first k characters constitute the original mes-
sage. However, if the check data does not match, an error
has been detected.

3.3 Erasure Decoding

In some cases, a codeword may be corrupted by a simple
deletion of a few characters in the word at known loca-
tions. These deletions are called erasures and recovery
from erasures is straightforward when there are no other
errors present. If characters e1, . . . ,e f have been erased,
with f ≤ m, then we can recover the intended message
in the following manner. Let ~̂c represent the first k non-
erased characters from the received word. Form F̂ by re-
moving rows e1, . . . ,e f from F ; also remove the last m− s
rows. F̂ is a k× k submatrix of F and is thus invertible.
Therefore, ~d = F̂−1~̂c.

3.4 Code Distance and Error Decoding

Recovering a message from a received word when the lo-
cations of the errors are unknown is more difficult and
requires greater redundancy. Here, we will only discuss
the conditions under which it is possible to recover from

6

such silent errors, and leave the details of how to perform
the decoding to other sources.

The Hamming distance, or simply distance, between
two words of the same length is the number of positions at
which the two words differ [4]. The distance d of a code
is the minimum distance between any two codewords in
the code. This is the minimum number of errors that must
occur in order to change one valid codeword into another.

Notice from the discussion of erasure decoding in Sec-
tion 3.3, that any k correct characters from a codeword
are sufficient to recover the message. Therefore, any two
codewords must differ from each other in at least m + 1
positions. For one codeword to be transformed into an-
other, at least m + 1 errors must have accumulated. Thus
d = m+1 for this class of codes.

Without a known bias in the types of errors that accu-
mulate in a codeword, the standard approach is to decode
a received word to the codeword that is nearest in Ham-
ming distance. If a codeword has accumulated t errors
during storage or transmission, then the received word is
a distance t from the codeword. If t < d

2 then no other
codeword is closer to the received word than the original
codeword. The received word will be correctly decoded
to the original codeword. On the other hand, if t ≥ d

2 then
some other codeword may be closer to or as close to the
received word as the original codeword. If so, the decod-
ing will be incorrect. For our codes, if t < d

2 = m+1
2 silent

errors have accumulated in a given received word, then
we can always correctly decode to the original codeword.
t < m+1

2 is the error bound for this code.
For t small, e.g. t = 1 or t = 2, it is reasonably efficient

to simply check whether each word that is distance t from
the received word is a codeword. If one is, decode to that
codeword. For larger t, a more sophisticated algorithm
is required to decode efficiently. The Welch-Berlekamp
algorithm is suggested [17, 2].

3.5 Simultaneous Erasure and Silent Error
Decoding

These codes can also correct simultaneous erasures and
silent errors, for m sufficiently large. If the received word
contains f erasures and t silent errors then it may al-
ways be decoded correctly for 2t + f < m+1. Exhaustive
search of nearby words is recommended for t small, and
the Welch-Berlekamp algorithm for t large.

3.6 ECC for Data Storage

A primary use of ECC in computer systems is to protect
stored data from corruption or device failure. RAID sys-
tems are often used for this task. A RAID (Redundant
Array of Independent Disks) is a collection of total T =

M + N storage devices with the capacity to hold N de-
vices worth of data. As with general ECC, the stored data
is broken into l bit characters, and the l bit characters are
grouped into length k = N messages. Each character in a
message is stored on a different one of the N data devices.
m = M characters of check data are generated per Sec-
tion 3.1; these characters are stored across the remaining
M check devices. Together with the Reed-Solomon cod-
ing scheme, we refer to this setup as RS(T , M) by analogy
with the simpler schemes such as RAID0–6.

The failure of a device in the RAID corresponds to an
erasure. So long as no more than M devices fail simulta-
neously, full data recovery is possible using the technique
outlined in Section 3.3. Undetected sector failures and er-
roneous device read or write operations might contribute
silent errors to a codeword. These may also be detected
and corrected per Sections 3.2, 3.4, and 3.5.

4 The Computational Cost of ECC
ECC is not free but comes with certain computational
costs. In this section we will analyze these costs for vari-
ous ECC-related tasks.

In a computer system, we usually must handle a large
amount of data all at once, particularly when preparing
data for RAID storage. Let D ∈GF(2l)k×p be a matrix of
such data. Each column of D corresponds to a message
~d; p is the number of messages to be handled; and the
ith row of D consists of all characters in the ith message
position in all of the messages. C = FD is the matrix of all
codewords, including both message and check data. The
first k rows of C are identical to D, and the last m rows of
C are check data.

4.1 Generating Check Data
The check characters in the codewords C are computed by
multiplying D by the last m rows of F . This requires mkp
multiplications and m(k−1)p additions over GF(2l). This
is essentially m multiplications and additions for each
character of message data.

4.2 Recovery from Erasures
Recovery from data erasures will be of particular interest
in the application of ECC to storage systems, as discussed
in Section 3.6. In this case, a failed storage device cor-
responds to the erasure of a row of data from the matrix
C. We now give a detailed account of the computation
needed to recover from such erasures.

Notice that since F is systematic, it has the form

F =
[

Ik
?

]
,

7

where Ik is the k× k identity matrix, and ? some matrix.
Assume there have been f erasures of rows of data from
the first k rows of C corresponding to message data , and
thus s = k− f message characters survive in each code-
word. So long as no more than m− f of the check char-
acters are erased, we can recover the erased message data.
We need only k characters total from the codewords to re-
cover this data, so we may discard extra check characters
if fewer than m total characters were erased.

Construct Ĉ as k characters (rows) of C that were not
erased, including all available message characters. If Q is
obtained from the n×n identity matrix by removing the m
rows corresponding to erased (or ignored) characters, then
Ĉ = QC. Construct D̂ as a permutation of D so that good
data drives appear first in D and erased or ignored data

appears last. We may denote this by D̂ = PD =
[

X
Y

]
where P is the appropriate permutation matrix, X is the
good data and Y is the lost data. If we then set F̂ = QFPT

(noting that PT = P−1) we have the reduced system F̂D̂ =
Ĉ. F̂ has the additional block structure

F̂ =
[

Ik 0
A B

]
,

so we have the system of equations

F̂ D̂ Ĉ[
Ik 0
A B

] [
X
Y

]
=
[

X
W

]
where W is the matrix of remaining check data. This can
be rewritten as AX +BY = W . Y is the unknown lost data,
and all other variables are known, so we simply solve this
system for Y : Y = B−1(W −AX).

It is the cost of computing Y via this formula in which
we are interested. We will assume that the operation cost
associated with constructing B, W , A, and X are negligi-
ble, as through clever referencing of F and C they need not
be explicitly constructed. There are three steps in comput-
ing Y with operations counts as follows: (1) Computation
of AX requires s f p Galois Field multiplies and (s−1) f p
GF additions. (2) Subsequent computation of W −AX re-
quires f p additions. (3) Solving BY = W −AX for Y via
LU factorization of B may be further broken into three
steps:

1. Computing the LU factorization of B without pivot-
ing requires 1

3 (f 3 − f) additions, 1
3 (f 3 − f) multi-

plies, and 1
2 f (f −1) divides [15].

2. Solving LZ = W −AX for Z using forward substitu-
tion requires (f − 1)p + 1

2 (f 2− 3 f + 1)p additions,
and 1

2 (f 2−3 f +1)p multiplies.

3. Solving UY = Z for Y using backward substitu-
tion requires (f − 1)p + 1

2 (f 2− 3 f + 1)p additions,
1
2 (f 2− f m+1)p multiplications, and f p divisions.

The overall operation count is:

• Additions (including subtractions): f p(f + s− 1)−
l + 1

3 (f 3− f));

• Multiplications: f p(f + s−3)+ l + 1
3 (f 3− f);

• Divides: f p+ 1
2 f (f −1).

RAID systems are generally measured by their
throughput, that is, how many bytes (characters) can be
accepted or delivered within a fixed time interval. With
this in mind, the most useful perspective on the cost of
computation is with regard to each data byte that is ac-
cepted or delivered, i.e. the number of original data bytes
in the system which is the number of data bytes in D, Nl.
We can think of the operation counts listed above as a
cost per original byte plus some overhead associated with
computing the LU factorization of B. Table 3 summarizes
these costs, also using the relationship k = f + s to further
simplify expressions.

Count
+, - f kp− f p− p+ 1

3 (f 3− f))
· f kl−3 f p+ p+ 1

3 (f 3− f)
÷ f p+ 1

2 f (f −1)
Count per byte of original data

+, - f − f +1
k

· f − 3 f−1
k

÷ f
N

Overhead
+, - 1

3 (f 3− f))
· 1

3 (f 3− f))
÷ 1

2 f (f −1)

Table 3: Summary of the count of operations required to
recover lost data.

In summary, if f data devices are lost, then it costs
about f additions and multiplies and < 1 divide per byte
of original data requested to read data plus an additional
f 3 additions and multiplies and f 2 divides of overhead
costs associated with computing the LU factorization.
When f � p as is typically the case, the cost of f ad-
ditions and multiplies per original data byte is the domi-
nating cost of data delivery. As discussed in Section 4.1,
it costs about m additions and multiplies per original data
byte to generate (or regenerate) the check drives. Thus
the cost of preparation for the failure of m drives is essen-
tially the same as the cost of recovering from the failure
of m drives: m additions and m multiplications.

8

4.3 System performance and GalOPS

Computational devices such as the CPU are capable of
performing a certain number of Galois field operations
per second. This determines the speed of Reed-Solomon
style ECC. In a general purpose CPU the circuitry that
performs integer arithmetic (modulo a power of 2, typi-
cally 2k, where k = 8, 16, 32 and 64) is used to simulate
the Galois field operations. GF(2l) for small l is a finite set
of cardinality small enough for a lookup table approach
to multiplication and division. Additions may be directly
performed by the existing integer arithmetic logic. To-
day’s CPU’s lack a dedicated hardware implementation of
Galois field operations, but this situation may change. To
make reasonable choices of the parameters of the system,
ECC system designers face the problem of estimating how
much computer resources the main algorithm would con-
sume. This includes the silicon and CPU cycles. The ab-
solute operation counts presented in this section can be
a starting point of evaluating system performance. How-
ever, due to pipelining and branch prediction, more than 1
Galois field operation will be performed per clock cycle.
In fact, the number can easily be as high as 16–32 on a
real computer system, as evidenced by the data presented
in Section 2.

We propose rating computer systems according to the
number of Galois field operations per second that the sys-
tem can perform. Necessarily, the measurement would
need to be performed using some standardized bench-
marking software.

In the past, similar synthetic measures have been de-
vised for floating-point arithmetic, and the most popular
measure in the High-Performance Community is the num-
ber of FLOPS, FLOating point OPerations per Second,
that a processor can perform. For a 2.4GHz processor,
it is not uncommon to achieve 25 GigaFLOPS, an order
of magnitude difference between the clock speed and the
FLOPS count, on standard Linear Algebra benchmarks
(LINPACK).

A similar measure for the I/O subsystem only is called
IOPS and is used in the IOMeter software originally from
the Intel Corporation [8].

We propose a similar measure expressed in GalOPS,
Galois OPerations per Second (pronounced G-ah-lops), to
evaluate the performance of a computer system from the
point of view of its capability to perform Galois field arith-
metic. Since the essence of the erasure coding algorithm
we presented is linear algebra over the finite field GL(2l)
or in the vector space GL(2l)k, we could use the Reed-
Solomon code implementation introduced in Section 2 as
one such measure. Of course, the measure would depend
on parameters, such as l and k.

In the era of virtual design, GalOP ratings of computer
systems could not only be obtained for existing, but also

future hardware (using existing simulators), and help in
controlling costs before large systems supporting ECC,
such as cloud infrastructures, are even built or deployed.

5 Design and Reliability of RAID
The engineering design of RAID systems is about increas-
ing reliability by using redundancy, and yet it involves
compromises, such as keeping the design cost down by
using the smallest number of devices which satisfying the
reliability objectives. We must have quantitative measures
of reliability and, short of conducting massive, costly ex-
periments, we must rely upon mathematical models to
predict, for instance, what fraction of deployed RAID sys-
tems would fail in, say, 5 years.

A simple quantitative model of reliability of a
RS(T , M) system should represent reliability as func-
tion of its fundamental parameters: the number of data
drives N, the number of check drives M, the total num-
ber of drives T = M + N, and the reliability of a single
device, represented by the failure rate λ , which is as-
sumed constant. Modeling various scenarios leading to
RAID failure is a subject of a significant number of pub-
lications [10, 11, 3, 6]. A popular reliability measure is
the mean time to data loss (MTTDL). In the case of an
isolated RAID system which can only fail due to random
loss of devices happening with rate λ and which is never
repaired, an exact formula for MTTDL exists [6]:

MTTDL =
1
λ

M

∑
k=0

1
1− k/T

1
T
≈ 1

λ

∫ M/T

0

1
1−u

du.

It is not hard to see that for large T the following approx-
imation can be made:

MTTDL≈ λ log
1
R

. (1)

where R = N
T is the rate, the fraction of data devices in the

RAID. Solving for R we obtain:

R = e−
MTTDL

λ (2)

This yields a simple, prescriptive rule which tells us what
portion of the devices in our system should be data de-
vices vs. check devices to achieve a desired MTTDL by
determining R via the formula above. λ , the failure rate
of an individual device is typically provided by the device
manufacturer. Notice that λ is the inverse of the MTTDL
for a single device. RAID failure modeling literature pro-
vides more rules of this sort, taking into account com-
mon sources of failure, such as sector errors, maintenance
schedules and human error [6].

9

5.1 Benefits of M > 2

Note that 2 check devices are used in the familiar RAID 6
configuration. The main objection to systems with this
few check devices is their vulnerability to not only de-
vice failure but also silent data corruption. We can easily
evaluate the problem remembering the inequality 2t + f <
M + 1 from Section 3.5, which must hold in order to re-
cover from errors. Thus, RAID with M = 1 cannot recover
from just a single silent data error (unnoticed corruption
of 1 byte of M + N of the codeword). When M = 2, 1
failed device and 1 silent data error cause the system to
lose data. Since it is expected that every RAID6 will have
at least one failure in its lifetime, RAID6 is not resilient
to silent errors. In fact, a RAID6 that encounters a silent
error during reconstruction will silently corrupt additional
data. To be resilient in the face of silent errors, which
have been carefully documented in large systems [9], a
minimum of M=3 check drives are required.

5.2 Large M solves the Big Data problem
The main benefits of a design that supports a higher check
device count are lowered cost and increased reliability for
large (Big Data) systems. By matching M with N we may
build optimal storage systems for arbitrarily large data and
arbitrarily strong reliability requirements, and thus solve
the Big Data problem.

For example, no modern RAID vendor supports a
RAID 6 configuration of 50 drives or more. They rec-
ognize that the likelihood of data loss is too high. Instead,
they deploy less efficient, more costly configurations such
as 10+2 (i.e. M = 10 and N = 2), replicated 5 times.

Using more check drives allows the deployment of
larger configurations, for example, 50+5, that require
fewer total components and need less frequent service.
The service requirement can be delayed until the risk of
data loss warrants a service call.

Larger systems with more check drives lower the acqui-
sition, operation and service costs, while simultaneously
increasing the protection from data loss.

6 Conclusions
The world is filled with sophisticated CPU devices. These
range from those in our cell phones and digital cameras
to our automobiles, airplanes, communication processors
and business equipment. Today, it is normal for data to
remain unprotected as it travels around these systems, and
as such, is lost. Who has not seen “high-definition” video
disintegrating to a collection of large, colorful squares2,

2The proper term is “pixelation”. There are other causes of pixelation
besides data loss. Those cannot be addressed with ECC because they
are artifacts of “normal” lossy codec operation, which gives priority to

or heard audio dropouts, or experienced corrupted files?
This state of affairs is no longer necessary to tolerate. Data
need not be lost again3. With the addition of a simple
software ECC algorithm, data can be protected from its
“birth”, whether it originates in a camera, or as the result
of a business calculation, or as part of the research that
will affect our future health and security.

We call our variant of this solution Virtual ECC. We
identified how, utilizing the ubiquity of CPU’s around us,
to eliminate many sources of noise, both identified and
silent, and provided hard measurements of real proces-
sors computing very reliable codewords. We described a
practical implementation as a kernel module in the forth-
coming Windows 8 platform. We presented benchmarks
showing that the approach is not only viable, but it pro-
vides excellent performance and reliability characteris-
tics, exceeding those of typical hardware ECC.

References
[1] ATTO Technology, Inc. Disk Benchmark—ATTO.

http://www.attotech.com/products/
product.php?sku=Disk Benchmark, 2012. Soft-
ware.

[2] Peter Gemmell and Madhu Sudan. Highly resilient
correctors for polynomials. Information Processing
Letters, 43(4):169–174, September 1992.

[3] Kevin M. Greenan, James S. Plank, and Jay J. Wylie.
Mean time to meaningless: MTTDL, Markov mod-
els, and storage system reliability. In HotStorage
’10: 2nd Workshop on Hot Topics in Storage and
File Systems, Boston, June 2010.

[4] R. W. Hamming. Error detecting and error correct-
ing codes. Bell System Technical Journal, 29:147–
160, April 1950.

[5] F. J. MacWilliams and N. J. A. Sloane. The Theory
of Error-Correcting Codes, Part I. North-Holland
Publishing Company, Amsterdam, New York, Ox-
ford, 1977.

[6] Sarah Edge Mann, Michael Anderson, and Marek
Rychlik. On the Reliability of RAID Systems: An
Argument for More Check Drives. arXiv.org, cs.PF,
February 2012.

[7] Microsoft. http://code.msdn.microsoft.com/
windowshardware/
WDKStorPortVirtualMiniport-973650f6.

maintaining fixed bitrate over image quality.
3At least on time scales so long that an average person will never see

important data loss during their lifetime.

10

[8] Intel Corporation (original version of 1998). Iome-
ter. http://www.iometer.org/, 1998–2012. Software.

[9] Bernd Panzer-Steindel. Data integrity. Technical
report, CERN/IT, April 2007.

[10] Jehan-François Paris, Ahmed Amer, Darrell D. E.
Long, and Thomas J. E. Schwarz. Evaluating the
Impact of Irrecoverable Read Errors on Disk Array
Reliability. In Proceedings of the IEEE 15th Pacific
Rim International Symposium on Dependable Com-
puting (PRDC09), November 2009.

[11] Jehan-François Paris, Thomas J. E. Schwarz, Dar-
rel D. E. Long, and Ahmed Amer. When MTTDLs
Are Not Good Enough: Providing Better Estimates
of Disk Array Reliability. In Proceedings of the
7th International Information and Telecommunica-
tion Technologies Symposium (I2TS ‘08), December
2008.

[12] W. W. Peterson and E. J. Weldon, Jr. Error-
Correcting Codes. The MIT Press, Cambridge, Mas-
sachusetts, second edition, 1972.

[13] James S. Plank. A Tutorial on Reed-Solomon Cod-
ing for Fault-Tolerance in RAID-like Systems. Soft-
ware – Practice & Experience, 27(9):995–1012,
September 1997.

[14] James S. Plank and Y. Ding. Note: Correction to the
1997 Tutorial on Reed-Solomon Coding. Software
– Practice & Experience, 35(2):189–194, February
2005.

[15] Lloyd N. Trefethen and David Bau. Numerical Lin-
ear Algebra. SIAM: Society for Industrial and Ap-
plied Mathematics, June 1997.

[16] J. H. van Lint. Introduction to Coding Theory.
Springer-Verlag, New York, 1982.

[17] Lloyd R. Welch and Elwyn R Berlekamp. Error Cor-
rection for Algebraic Block Codes, December 1986.
United States Patent. Patent number: 4,633,470.

11

