References of Autologous Stem Cell Therapy for Erectile Dysfunction:

[1] NIH Consensus Conference
Impotence. NIH consensus development panel on impotence
JAMA, 270 (1993), pp. 83–90

The future is today. Emerging drugs for the treatment of erectile dysfunction

Anatomy, physiology, and pathophysiology of erectile dysfunction

Erectile dysfunction: a disease marker for cardiovascular disease
Cardiology, 19 (2011), pp. 5–11

Standard operating procedure for the preservation of erectile function outcomes after radical prostatectomy

Preclinical evidence for the benefits of penile rehabilitation therapy following nerve-sparing radical prostatectomy

Multipotent stromal cell therapy for cavernous nerve injury-induced erectile dysfunction

Sildenafil. An orally active type 5 cyclic GMP-specific phosphodiesterase inhibitor for the treatment of penile erectile dysfunction

Synergistic effects of BAY 60–4552 and vardenafil on relaxation of corpus cavernosum tissue of patients with erectile dysfunction and clinical phosphodiesterase type 5 inhibitor failure

[10] K. Hatzimouratidis, D. Hatzichristou
Phosphodiesterase type 5 inhibitors: the day after

Emerging tools for erectile dysfunction: a role for regenerative medicine
Health outcomes variables important to patients in the
treatment of erectile dysfunction

Stem cells. Novel players in the treatment of erectile
dysfunction

[14] R.J. Jankowski, B.M. Deasy, J. Huard
Muscle-derived stem cells

Minimal criteria for defining multipotent mesenchymal stromal
cells. The international society for cellular therapy position
statement
Cytotherapy, 8 (2006), pp. 315–317 Article | PDF (74 K)

[16] L. Casteilla, V. Planat-Benard, P. Laharrague, B. Cousin
Adipose-derived stromal cells. Their identity and uses in
clinical trials, an update
World J. Stem Cell, 3 (2011), pp. 25–33
[17] J.M. Gimble, B.A. Bunnell, E.S. Chiu, F. Guilak
Concise review of adipose-derived stromal vascular fraction
cells and stem cells: let’s not get lost in translation
Stem cell, 29 (2011), pp. 749–754

Zhang et al.
Both immediate and delayed intracavernous injection of
autologous adipose-derived stromal vascular fraction
enhances recovery of erectile function in a rat model of
| PDF (3351 K)

[19] P.R. Crisostomo, T.A. Markel, Y. Wang, D.R. Meldrum
Surgically relevant aspects of stem cell paracrine effects
Surgery, 143 (2008), pp. 577–581 Article | PDF (402 K)

[20] P.R. Baraniak, T.C. McDevitt
Stem cell paracrine actions and tissue regeneration

et al. Injections of adipose tissue-derived stem cells and stem
cell lysate improve recovery of erectile function in a rat model
of cavernous nerve injury

Effect of muscle-derived stem cells on the restoration of corpora cavernosa smooth muscle and erectile function in the aged rat
BJU Int., 101 (2008), pp. 1156–1164

Apoptosis and effects of intracavernous bone marrow cell injection in a rat model of postprostatectomy erectile dysfunction

Effect of mesenchymal stem cell penile transplantation on erectile signaling of aged rats
Andrologia, 42 (2010), pp. 187–192

Treatment of erectile dysfunction in the obese type 2 diabetic ZDF rat with adipose tissue-derived stem cells

The effect of intracavernous injection of adipose tissue-derived stem cells on hyperlipidemia-associated erectile dysfunction in a rat model
Transplantation of nonhematopoietic adult bone marrow stem/progenitor cells isolated by p75 nerve growth factor receptor into the penis rescues erectile function in a rat model of cavernous nerve injury
J. Urol., 184 (2010), pp. 1560–1566 Article | PDF (1226 K)

Intracavernous transplantation of bone marrow-derived mesenchymal stem cells restores erectile function of streptozocin-induced diabetic rats

[34] T.M. Fandel, M. Albersen, G. Lin, X. Qiu, H. Ning, L. Banie et al.
Recruitment of intracavernously injected adipose-derived stem cells to the major pelvic ganglion improves erectile function in a rat model of cavernous nerve injury

Transplantation of muscle-derived stem cells into the corpus cavernosum restores erectile function in a rat model of cavernous nerve injury

Tracking intracavernously injected adipose-derived stem cells to bone marrow
Combined strategy of mesenchymal stem cell injection with
vascular endothelial growth factor gene therapy for the
treatment of diabetes-associated erectile dysfunction

[38] X. Qiu, J. Villalta, L. Ferretti, T.M. Fandel, M. Albersen, G. Lin
et al.
Effects of intravenous injection of adipose-derived stem cells
in a rat model of radiation therapy-induced erectile dysfunction

Effect of mesenchymal stem cells associated to matrixen on
the erectile function in the rat model with bilateral cavernous
nerve crushing injury

et al.
Therapeutic effect of adipose-derived stem cells and BDNF-
immobilized PLGA membrane in a rat model of cavernous
nerve injury

Kume et al.
Adrenomedullin mediates adipose tissue-derived stem cell-
induced restoration of erectile function in diabetic rats
[42]
C. Ying, M. Yang, X. Zheng, W. Hu, X. Wang
Effects of intracavernous injection of adipose-derived stem cells on cavernous nerve regeneration in a rat model

[43]
Effect of an adipose-derived stem cell and nerve growth factor-incorporated hydrogel on recovery of erectile function in a rat model of cavernous nerve injury

[44]
Periprostatic implantation of human bone marrow-derived mesenchymal stem cells potentiates recovery of erectile function by intracavernosal injection in a rat model of cavernous nerve injury
Urology, 81 (2013), pp. 104–110 Article | PDF (1302 K)

[45]
Comparative analysis of periprostatic implantation and intracavernosal injection of human adipose tissue-derived stem cells for erectile function recovery in a rat model of cavernous nerve injury
Prostate, 73 (2013), pp. 278–286

[46]
H. Zhang, R. Yang, Z. Wang, G. Lin, T.F. Lue, C.-S. Lin
Adipose tissue-derived stem cells secrete CXCL5 cytokine with neurotrophic effects on cavernous nerve regeneration

View Record in Scopus | Full Text via CrossRef | Cited By in Scopus (3)

[52] C.-S. Lin, T.F. Lue
Adipose-derived stem cells for the treatment of Peyronie’s disease?

Stem cell therapy for peyronie’s disease. morphological and functional outcomes of intraplaque injection of adipose-derived stem cells on a rat model of peyronie’s disease
J. Sex. Med., 9 (Suppl. 5) (2012), pp. 311–312

Adipose tissue derived stem cells secretome. Soluble factors and their roles in regenerative medicine