Model 845-HP Datasheet Portable 20+ GHz Microwave Signal Generator High Power +23dBM Power Output

Berkeley Nucleonics Test, Measurement and Nuclear Instrumentation since 1963

Introduction

The Model 845-HP is a low-noise and fast-switching microwave signal generator covering a continuous frequency range from as low as 100 kHz up to 20.4 GHz with a 0.001 Hz resolution.

The Model 845-HP is a wide and accurately levelled output power range (up to +23 dBM) and high spurious suppression. Advanced frequency synthesis with fractional-N divider makes for low SSB phase noise and micro-Hz resolution. Power Level extension is available to accurately level below -100 dBM.

The Model 845-HP includes amplitude modulation (AM), DC-coupled, low distortion wideband frequency modulation (FM), PM, FSK and PSK, frequency chirp, and fast pulse modulation with internal pulse train generator. Three internal modulations sources are available. All modulation modes of the Model 845-HP can be combined. This allows the generation of complex modulation signals for modern communication and location systems. The combination of FM and AM can be used to check fading effects of FM receivers. The combination of pulse modulation and FM simulates Doppler effects or chirp signals.

Simultaneous AM and pulse modulation provides the types of signal occurring in pulse radar applications with rotating antenna.

Both Model 845-HP models allow fast analog and digital sweeps including flexible list sweeps, where frequency, power and dwell times can be set individually. A flexible triggering capability simplifies synchronization within test environments.

The Model 845-HP's operate with an ultra-stable temperature compensated 100 MHz reference (OCXO) to ensure minimal drift, and can be phase-locked to any stable external reference in a range from 1 to 200 MHz. Additionally, optimum phase synchronous signals can be achieved by bypassing internal and feeding a 100 MHz signal directly as reference.

The Model 845-HP's support various standard interfaces such as USB-TMC, LAN, and GPIB.

It is targeted for applications where a high-quality CW microwave source with versatile modulation is required. It offers an alternative to expensive high-end microwave signal generators, where small size and excellent microwave performance at an attractive cost is required.

Applications for the Model 845-HP include:

- R&D low noise microwave source
- Production testing (industry-leading switching times; high dynamic range)
- Service and maintenance (battery operation)
- Signal simulation (Radar, WiMax, UWB)
- Aerospace & Defence (Pulse modulator, Chirps)

Signal Specification

The specifications in the following pages describe the warranted performance of the signal generator for 23 ± 10 °C after a 30 minute warm-up period and for all configurations (options 7096 if not explicitly stated). Typical specifications describe expected, but not warranted performance. Min and Max specifications are warranted.

Parameter	Min.	Тур.	Max.	Note
CW mode				
Frequency range	100 kHz		20 GHz	
resolution		0.001 Hz		
Phase resolution		0.1 deg		
Frequency update rate		600 µs		time from receipt of SCPI
List/Sweep mode		600 µs		command
SSB Phase noise at 10 GHz				
at 1 kHz from carrier		-100 dBc/Hz		
at 20 kHz from carrier		-108 dBc/Hz		
Wideband noise		-150 dBc/ Hz		
Amplitude Noise at 10 GHz		-130 dBc/Hz		Pout=+10 dBm, 100 kHz offset
		-140 dBm		noise floor

Signal Specification continuing

Parameter	Min.	Тур.	Max.	Note
Output power				
Range without option 7096 100 kHz to 50 MHz 50 MHz to 5 GHz 5 GHz to 18.5 GHz 18.5 GHz to 20 GHz	-30 dBm -30 dBm -30 dBm -30 dBm		+10 dBm +18 dBm +22 dBm +18 dBm	
Range WITH option 7096 100 kHz to 100 MHz 50 MHz to 5 GHz 5 GHz to 18.5 GHz 18.5 GH to 20 GHz	-90 dBm -90 dBm -90 dBm -90 dBm		+10 dBm +16 dBm +20 dBm +16 dBm	
Level resolution		0.01 dB		
Level uncertainty, ALC on		0.3 dB	< 1 dB	-15 to +10 dBm
User flatness correction		up to 2000 points	< 1.5 dB	> -90 dBm < +10 dBm
Output impedance		50 Ω		
VSWR		2.0		
Reverse Power Protection				
DC Voltage			±15 V	
RF power			30 dBm	
Spectral purity at + 5 dBm				
Output harmonics		-40 dBc	-35 dBc	0.1 to 5.0 GHz
		-35 dBc	-30 dBc	5.0 to 10.0 GHz
		-45 dBc	-40 dBc	> 10.0 GHz
Sub -harmonics				
		-75 dBc	-60 dBc	
Non -harmonic spurious				
		-75 dBc	-60 dBc	at +5 dBm output power
Residual FM @ 10 GHz		15 Hz		0.3 kHz to 3 kHz, weighted (ITU-T), RMS
Residual AM @ 10 GHz		0.02 %		RMS value (0.01 kHz to 15 kHz)

Sweeping Capability

Sweeps can be performed with combined internal or external AM/FM/PM/pulse modulation running. With modulation enabled, the minimum step time increases to 2 ms.

Parameter	Min.	Тур.	Max.	Note
Digital frequency sweep				
Sweep type: linear, logarithmic, random				
Step time (tstep)	500 μs		19998 s	

Sweeping Capability continued

Parameter	Min.	Тур.	Max.	Note
Dwell time (tdwell)	10 µs		9999 s	
Off-time (incl. transient time) (toff)	0/50 μs		9999 s	
Timing accuracy per point		1 μs		
Trigger				
		RFon		RFon
	tdelay	tdwell	toff	
Generalized list sweep		tstep		
allows individual setting of frequent	cy, power, dwei 2	I-time, and off-time	e for each point 65'000	
	∠ 500 μs		19998 s	mechanical attenuator not used
Step time (<i>tstep</i>) Dwell time (<i>tdwell</i>)	500 μs 50 μs		9999 s	
Off-time (incl. transient time) (<i>toff</i>)			9999 s	
Time resolution	, ο, οο μο	0.1 μ		
Timing accuracy per point		1 μs		
Ramp (analog) sweep				
Sweep span		20 9	%	of carrier frequency
Sweep rate	tbd		N · 5 GHz / ms	
Sweep time	0.1 ms		100 ms	
Frequency Chirps				
(linear ramp, up/down)				
Bandwidth	10%			of carrier frequency
Dwell time (tdwell)	10 ns		100 µs	
Number of frequencies			65'000	

Reference Frequency REF IN input and REF OUT output are at rear panel

Min.	Тур.	Max.	Note
	100 MHz		
		±40 ppb	calibrated at 23 \pm 3 °C at time of calibration
		±100 ppb	
	0.5 ppm		
		5 ppb	
	5 min		
	10 MHz		
	10/100 MHz		
	0 dBm		
	50 Ohms		
	100 MHz, -5 to +10 dBm		High phase synchronus mode
8 MHz		250 MHz	
1 MHz		250 MHz	
			User programmable
-5 dBm	0 dBm	+13 dBm	
		±1.0 ppm	
	50 Ohms		
	8 MHz 1 MHz	100 MHz 0.5 ppm 5 min 10 MHz 10/100 MHz 0 dBm 50 Ohms 100 MHz, -5 to +10 dBm 8 MHz 1 MHz -5 dBm 0 dBm	100 MHz ±40 ppb ±100 ppb 0.5 ppm 5 min 5 ppb 5 min 10 MHz 10 MHz 10/100 MHz 10/100 MHz 10/100 MHz 50 Ohms 100 MHz, -5 to +10 dBm 50 Ohms 100 MHz, -5 to +10 dBm 50 Ohms 100 MHz 100

Multi Purpose Output (FUNC OUT)

Output is FUNC OUT at rear panel

Parameter	Min.	Тур.	Max.	Note
MULTIFUNCTION GENERATOR		sine, triangle, squar	e wave	
Frequency range	1 Hz		3 MHz	sine
	1 Hz		1 MHz	triangle
			50 kHz	square
Frequency resolution		0.1 Hz		
Output voltage amplitude peak-peak	10 mV	5V	2 V	Sine, triangle, Square (CMOS output)
Harmonic Distortion		1 %		< 100 kHz, 1 Vpp
Output impedance		50 Ohms		Sine, triangle
		CMOS		square wave
VIDEO OUTPUT (of internal pulse mo	odulator)			
Output		CMOS		
Period	30 ns		50 s	

Multi Purpose Output (FUNC OUT) continued

Parameter	Min.	Тур.	Max.	Note		
Pulse Width	15 ns		50 s			
RF delay	10 ns					
TRIGGER OUT	Synchronization mode for multiple sources					
Modes	Trigger on sweep start					
	Trigger on each point					
Trigger waveform pulse width	100 ns					

Trigger (TRIG IN)

Input is TRIG IN at rear panel

Parameter	Min.	Тур.	Max.	Note
Trigger Types	Continue			
Trigger Source	RF key, e	external, bus (GP USB)	'IB, LAN,	
Trigger Modes	Continuou	s free run, trigge reset and run	er and run,	
Trigger latency		tbd		
Trigger uncertainty		5 μs		
External Trigger delay	50 _μ s		40 s	
External Delay Resolution		15 ns		
Trigger Modulo	1		255	Execute only on Nth trigger event
Trigger Polarity		Rising, falling		

Modulation Capabilities

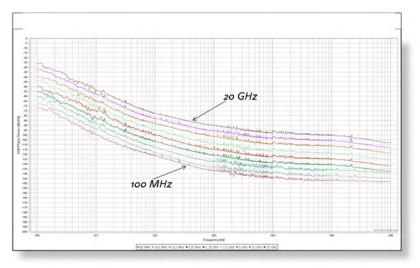
Combined AM/PM/FM/PULSE possible (see user manual)

Parameter	Min.	Тур.	Max.	Note
Multifunction Generator	sine, triangle, square	wave		
Output is FUNC OUT at rear part	nel			
Frequency range	1 Hz		3 MHz	sine
	1 Hz		1 MHz	triangle
			50 kHz	square
Frequency resolution		0.1 Hz		
Output voltage amplitude peak-	peak 10 mV		2 V	Sine, triangle

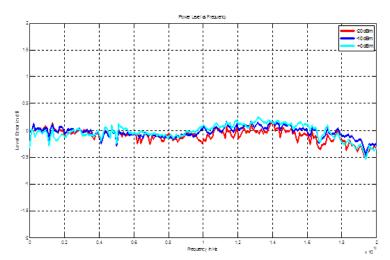
Modulation Capabilities continued

Parameter	Min.	Тур.	Max.	Note
Output voltage amplitude peak-peak		5V		Square (CMOS output)
Harmonic Distortion		1 %		< 100 kHz, 1 Vpp
Output impedance		50 Ohms		Sine, triangle
		CMOS		square wave
Pulse Modulation				
On/off ratio		70 dB		at +10 dBm
Repetition frequency	DC		10 MHz	
Pulse width	30 ns			ALC hold
	50 ms			ALC on
Pulse rise/fall time		7 ns		
Pulse trains length (pulses)	2		4192	
Pulse width	30 ns		100 μ s	
Pulse resolution		15 ns		
Polarity		selectable		
External input amplitude		1 V		AC
		TTL		DC
Frequency Modulation		> 0.05·f		< 1.25 GHz
Maximum Frequency deviation (peak)		N · 200 MHz		1.25 GHz to 2.5 GHz (N=0.125)
				2.5 GHz to 5 GHz (N=0.25)
				5 GHz to 10 GHz (N=0.5)
				> 10 GHz to 20 GHz (N=1)
Modulation rate	DC		800 kHz	> -3dB frequency response
Modulation waveforms		Sine, triangle, FSK		
External input sensitivity				
AC		0 to N \cdot 200 MHz / V		adjustable for ±1 V range
DC		0 to N · 100 MHz / V		discr. values; ±5 V range
Total harmonic distortion		< 1%		1 kHz rate & N · 1 MHz deviation
Phase Modulation				< 1.25 GHz
Phase deviation (peak)	0		N·300 rad	> 1.25 GHz
Modulation rate	DC		800 kHz	> -3dB frequency response
				Max. phase deviation degrades
				above 20 kHz modulation rate
Modulation waveforms		Sine, triangle, FSK		
External Input sensitivity	ç	Settable 0.1 rad/V to 360 ra	ad/V	
Total harmonic distortion		< 1%		1 kHz rate & N x 100 rad deviation

Berkeley Nucleonics Coporation - 2955 Kerner Blvd - San Rafael CA 94901 800-234-7858 or LiveChat @ www.berkeleynucleonics.com



Modulation Capabilities continued


Parameter	Min.	Тур.	Max.	Note
Amplitude Modulation				
Modulation rate	0.1 Hz		20 kHz	
Modulation waveforms	S	Sine, triangle, squa	are	
Modulation depth	0 %		90 %	
Distortion (sine wave)		2 %		at 60% modulation depth
Accuracy		4 %		

Typical performance curves

Phase Noise Performance (1 Hz to 50 MHz offset)

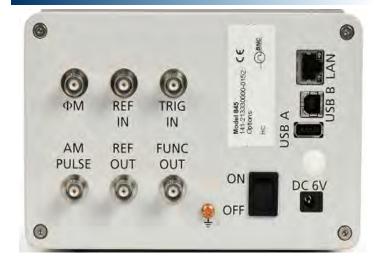
Typical Frequency Response 0 to 20 GHz at -10, 0, and +10 dBm

Typical Maximum Output Power (without option 7096)

Typical Maximum Output Power (WITH option 7096)

Image Coming Soon...

Image Coming Soon...


Connectors

845 Series Front Panel

- 1. RF output: SMA female
- 2. RF on/off button
- 3. Rotary knob
- 4. Menu and arrow keys

845 Series Rear Panel

- 1. Trigger input: BNC female
- 2. Function output: BNC female
- 3. External reference input: BNC female
- 4. Internal reference output: BNC female
- 5. FM/PM modulation input: BNC female
- 6. AM and Pulse modulation: BNC female
- 7. LAN connection: RJ-45
- 8. USB 2.0 host and device
- 9. GPIB: IEEE-488.2, 1987 with listen and talk (optional)
- 10. DC Power plug (6V, 2.5A)
- 11. DC power switch

General Characteristics

Options

- 7096: Extended power range down to <-90 dBm) step attenuator module

- 7088: battery module
- 7094: IEEE-488.2,1987 programming interface
- 7091: 19" rackmount enclosure: good for one or two adjacent units.

Figure 1

GPIB: IEEE-488.2, 1987 programming interface.

> CEnotice Safety/EMC Complies with applicable Safety and EMC regulations and directives.

Remote programming interfaces Ethernet 100BaseT LAN interface, USB 2.0 host & device

GPIB (IEEE-488.2,1987) with listen and talk (optional) Control language SCPI Version 1999.0 Power requirements: 6 VDC; 20 W maximum Mains adapter supplied: 100-240 VAC in/ 6V, 3.3A DC out Operating temperature range: 0 to 40 °C Storage temperature range: -40 to 70 °C Operating and storage altitude up to 15,000 feet