
Technical Overview

 ©2014, Conjur, Inc.

Helping DevOps meet rapidly changing audit, security, and infrastructure needs.

Executive Summery

 Why Conjur?

Use Cases

 SSH Access Management

 Secrets Management

 Service-to-Service Authorization

Architecture and Deployment

Architecture Overview

 Conjur Server

 Encryption

 Authentication

 Audit

 Authorization

 High-Availability Design

 Platforms Supported

 Client Tools

Technical Overview

3

3

4

4

4

5

6

6

6

6

7

7

7

8

9

9

I. Executive Summary

Conjur is a cloud-native platform for directory services, authorization, and audit for development and operations
teams and their entire infrastructure.

With 100% API coverage and a scalable, easily deployable, high-availability architecture, Conjur reduces the time,
cost, and complexity associated with building authorization management compared to complex homegrown scripts
and configuration management tools. Sometimes referred to as “Active Directory for the cloud”, Conjur runs in either
a virtual machine or container, and works alongside a wide range identity and access management (IAM) solutions
to solve access and authorization challenges: machine-to-machine permissions, deployment and access rights to
sensitive systems, and the auditing required to meet compliance requirements.

“Conjur is more than just an outstanding platform for managing authorization as a service: they are a partner that we
can innovate with, and an essential part of achieving our vision and solving the hard problems that arise as we move

our infrastructure into the cloud technologies that will drive our business forward.”
- Mike Kail, VP of Operations, Netflix

Why Conjur?
Innovation moves fast. Systems are created, deprovisioned, and changed in real time; Conjur helps organizations
keep up with this rapidly shifting landscape, adapting to and mitigating security risks and meeting compliance
requirements without slowing down their continuous integration workflows, and keeping secrets, keys, certificates,
and auth data out of repositories, off of hard drives, and secure.

Built with system administrators, DevOps professionals, and cloud architects in mind, Conjur natively supports a
wide range of potential use cases. Some of the most common reasons why organizations select Conjur over building
in-house solutions include:

• Compliance: auditable enforcement of both organizational and regulatory policies and rules, via existing
reporting systems (e.g., SIEM platforms, SumoLogic, Splunk)

• Risk Management: reduction of the attack surface for sensitive data (credentials, SSL/SSH keys and certificates,
secrets, etc.) by means of Conjur’s policy and governance platform

• DevOps Optimization: integration of security & controls in upstream development and operations work,
ensuring consistency across all production systems.

• Access Intelligence: unified control of identity (human & machine) and permissions across entire infrastructure
(bare metal, private, public, cloud) helps prevent failures, without relying on legacy systems for policy governance
and enforcement

Technical Overview

What Is Conjur?

II. Common Use Cases

While Conjur can be used for a wide variety of applications, three stand out as the most common. They are:

SSH access management
Conjur provides powerful, easy, standards-based SSH access to cloud servers and VMs and provides both
authentication and authorization of SSH login.

• authentication by public key. Public keys do not need to be physically copied or otherwise distributed to each
server or VM. Conjur makes the public keys available to SSH dynamically at login time

• authorization once an SSH connection is authenticated, it is then authorized. Authorization is a separate step from
authentication, during which the login system determines if the authenticated user should be granted login access,
and what their access level (via group membership) should be

Both authentication and authorization are performed in real-time, and both access grants and revocations take place
immediately.

The server to which SSH access is granted is intended to be provisioned to use Conjur as an authentication and
authorization provider, and must be assigned a “host” identity in Conjur.

In order to SSH to the server, a user needs to:

1. Have an associated Conjur user identity with registered personal public key. Note that no system user should be
created in advance in target environment

2. Use an appropriate personal SSH key, with matches the registered public key

3. Be allowed to access the target host with appropriate level of privileges, typically assigned through group
membership

Depending on Conjur permissions for the membership group, after successful login, user may have privileged
(“sudo”) or non-privileged access to the target system.

All authorization events on target system will be automatically sent to the Conjur and become part of the audit trail.

More details can be discovered at http://developer.conjur.net/tutorials/ssh

Secrets management
Automation scenarios, especially Continuous Integration and Deployment, often unavoidably include manipulation
of secret data (encryption keys, api keys, passwords, etc.) The traditional approach is to keep secrets either in code
repositories, configuration management tools, or inside of files on the server’s filesystem.

These choices introduce two primary security risks:

• Secrets can be easily compromised via access to server filesystem or its snapshot

• It is difficult to track who accessed the secret data, and often cumbersome to implement fine-grained permissions
control over it

Technical Overview

www.conjur.net

Conjur, Inc.
55 Cambridge Parkway
Suite 103
Cambridge MA 02142

Tel +1 (888) 885-1846

Fax
+1 (617) 914-0016
+1 (617) 752-3732

Technical Overview

Conjur addresses those issues, providing a solution for centralized manipulation of secrets, with comprehensive
audit trail. Each secret is stored in an encrypted access-controlled container on Conjur server. The typical workflow
for doing so is as follows:

1. A Conjur user who is authorized to manage particular secret stores “secrets” in the appropriate container – Conjur
supports a wide variety of container types, from binary to ASCII text

2. The Conjur host authorized to fetch particular secrets for automation purposes uses the “conjur env” tool to
obtain the relevant values from these containers, and then makes them available to the calling script via environment
variables and/or temporary files, minimizing risk of their leak via persistent filesystem storage and/or execution logs

3. Where relevant, a Conjur user may be allowed to fetch particular secret, and can do so explicitly using the Conjur
CLI toolset

4. (Optionally) Conjur host allowed to update secrets can run custom code to perform their rotation

All operations on secrets are recorded in the audit trail; more details can be discovered at http://developer.conjur.
net/tutorials/secrets

Service-to-service authorization
In a service-oriented architecture it is often important to restrict some services from talking to others, and
compliance requirements can require the ability to perform audits of both successful and unsuccessful service-to-
service interactions.

Both needs can be met by way of Conjur’s Role-Based Access Control (RBAC) capabilities:

1. Any service instance that needs to call other services should be assigned a Conjur host identity

2. The permissions model, presumably externally established, should be reviewed to ensure that it describes which
hosts/layers are allowed to talk to which hosts/layers

3. Outgoing service calls should be performed through the authentication proxy (to which the Conjur authentication
header can be added)

4. Protected services should be mapped to the authorization proxy, which in turn can recognize an authentication
token in an incoming request, and perform a permission check via the Conjur Server to decide whether the request
should be allowed

As a proof of concept, the following nginx plugins are available:

https://github.com/conjurdemos/forward-proxy-nginx -- authentication proxy

https://github.com/conjurdemos/service-to-service-nginx-lua -- authorization proxy

III. Architecture and Deployment

Conjur’s design and architecture is built with two primary goals: (1) to provide an easy-to-use, well documented,
extensible authorization system, and (2) to allow for non-disruptive integration into organizational workflows.
This approach has resulted in a series of specific implementation benefits:

• Ease of Integration: Conjur is built with a DevOps optimized UX (CLI-driven), with 100% API access from a variety
of languages, and can be deployed as a Linux virtual appliance, or into bare-metal systems

• No Vendor Lock-In: Conjur has been used in conjunction with all leading configuration management and DevOps
tools (Puppet, Chef, Salt, Docker, etc.)

• HA Design: Conjur can natively support both high availability and fault tolerance, with a distributed configuration
architecture and full fail-over/redundancy capabilities

• Minimal Dependencies: Conjur is self-contained, requiring no external database or server requirements

• Secure: All communication is fully encrypted, following industry best practices for managing data in use and at
rest; additionally, Conjur has invested in a rigorous third-party security analysis (results expected to be published Q4
FY14)

IV. Architecture Overview

Conjur server
A basic Conjur installation consists of a single server, which operates on a local Postgres database.

It exposes RESTful API via HTTPS (for authentication, permissions management, permissions checks, manipulation of
secrets and access to audit trail), alongside legacy LDAPS support, both of which expose directory capabilities (such
as bind and search) to facilitate utilization of Conjur by third-party systems which can be easily configured to work
with LDAP.

Encryption
All sensitive client data saved in Conjur
is encrypted at rest, and cannot be
accessed without the master key,
which is stored separately from DB. All
communication with clients happens
over SSL.

Note: it is possible to use either custom
certificate or self-signed certificate
generated automatically on server
installation.

Technical Overview

Authentication
Conjur supports not only human identities (“users”) but also identities for virtual machines, processes, and jobs (non-
human identities are called “hosts” across the documentation).

Almost all operations (with the exception of “login” and “read access” to user public keys) require a valid, Conjur-
specific authentication token, which is an expirable, cryptographically signed evidence of a Conjur identity. More
details are described online at http://developer.conjur.net/reference/services/authentication.

This authentication mechanism should not be considered as a replacement for general-purpose authentication
protocols. Instead, it is possible and recommended to programmatically map external authentication systems to
Conjur’s internal authentication mechanism, the specifics of which will vary based on existing authn infrastructure.

Audit
Operations such as permissions or secrets management and permission checks are automatically logged in the audit
trail, which can be either reviewed in an easy-to-read format or exported as a JSON stream to be used for access
intelligence purposes.

Administrators can also add customized records to the Conjur audit trail, for example, events generated in other
parts of their infrastructure.

Authorization
Conjur itself does not have a “super-user” concept, nor does it have
predefined permission hierarchy. Each rule must be created and applied by an
administrator.

Every user or host has specific permissions based on his/her assigned role,
and the permissions granted to that role.

The only predefined entities in Conjur are “admin” (initial user whose
sole purpose is to create identities for actual admins) and an empty “key-
managers” group (allowed to manage the directory of public keys of Conjur
users).

Admins set up the permissions model to fit their organization needs: create
user and host identities, organize users into groups and hosts into layers,
and grant permissions between them. This should be done with client tools
described below.

The users directory can be created from scratch or imported from external sources such as LDAP.

While simple permissions models can be built by the explicit creation of groups, layers, and resources, then granting
permissions across them, more complex models can be provisioned in a single pass by loading “policies”, which are
written in Conjur’s Ruby-based DSL.

For more details and step-by-step tutorials, please visit: http://developer.conjur.net/tutorials/authorization

Technical Overview

Authn deals primarily with
user identity: who is this
person? Is she who she says
she is?

Authz, on the other hand,
answers a different set
questions: what should this
user (or system - authz can
manage service-to-service
as well as user-to-service
permissioning) be allowed
to access?

High-Availability Design
Conjur architecture can be expanded from a standalone server to a high-availability schema, which consists of:

1. Master server: handles directory and audit records, manages all permission update operations, and hosts the root
SSL certificate used to sign follower’s certificates

2. Standby master: read-only replica of master, capable of replacing it in case of master server failure

3. Follower server: can perform all read-only functions, such as permission checks, distributing public keys,
and providing access to secrets. Followers ship the accounting records back to the master via out-of-band
communication.

The master-follower architecture provides:

• Global distribution: Master and
followers can be spread out across
availability zones, regions, and clouds

• Low latency: By placing followers
geographically near servers, a low-latency
connection to Conjur will be available
whenever needed

• High availability: Any follower or
the master can call Conjur services.
Therefore, if a master or follower is lost,
any other master or follower can take
over its responsibilities. Failover can
be performed manually, or automated
with health checks and the auto-scaling
capabilities of IaaS

• Cloud-friendly network architecture: Conjur only needs to be reachable on two ports: 443 (https) and 636
(ldaps). By distributing followers wherever they are needed, there is no need to set up complex network security and
routing configurations in order to allow the servers to reach Conjur; followers should be placed where needed (e.g. in
the private subnets), and connect to the master for replication on the fly

Provisioning of HA components is typically done via AWS CloudFormation templates, although it can also be
performed with custom scripts on platforms different than AWS.

As a part of the follower provisioning process, a new follower connects to the master using an SSH key provided as
a provisioning parameter. Once connected, the new follower downloads initialization data from the master, then
finishes configuring the Conjur services. As part of this configuration, an SSL certificate for the follower is created
and signed by master, and installed on the follower. It includes environment-specific hostnames used by client VMs to
talk to Conjur.

The root SSL certificate is present only on the master and standby master, not on followers. For this reason, followers
cannot be promoted to become masters.

More details can be found at http://developer.conjur.net/reference/architecture/ha.html

Technical Overview

Platforms supported
Conjur server can be deployed into any platform, including but not limited to: Amazon EC2, Amazon VPC, Microsoft
Azure, and bare-metal servers. Components of the Conjur HA architecture can be deployed across different clouds
if needed (the only restriction being availability of audit transport and streaming replication between followers and
master(s)).

Clients can be deployed in any environment, regardless of Conjur server deployment, as long as ports 443 and 636
are accessible to them.

The officially supported operating system for Conjur servers is Linux, with client tools (described below) available for
Linux, Windows and MacOS.

Client tools
Conjur provides comprehensive Ruby-based command-line toolset along with client libraries for Ruby, Java, Python
and Node.js. While any of them can be used for interaction with Conjur, the CLI is considered a primary tool for
system management and operation.

For those who are more familiar with visual UI, CLI supports an extension, which locally runs basic web UI, providing
simple capabilities for permissions management and audit review.

Custom UI solutions can be supported via the client API libraries made available by Conjur.

Technical Overview

