
The Critical Moment:
Getting Operational Intelligence
from Logs, Metrics, and
Transactions

2

Table of Contents
 The Critical Moment: Getting Operational Intelligence from Logs,
 Metrics, and Transactions

 Real-Time Analytics for Operational Insight

 Addressing the Real Problem: Too Much Data, too Little Time

 jKool Features

 Operational Intelligence and the Developer

 Conclusion

3

4

9

10

16

20

3

The Critical Moment: Getting Operational Intelligence
from Logs, Metrics, and Transactions

For Java developers, IT ops professionals and members of the DevOps group, the

ultimate advantage would be to know everything as it happens in their business—

and everything that could happen. To know all and see all with complete vision is the

competitive ideal: operations managers detecting performance problems before delays

arise, the company discovering trends the moment they form. If there is a function in

modern technology that offers anything close to this ideal of omniscience, it’s analyzing

and visualizing machine data in real time.

Such awareness is so difficult to attain, and it is often impossible for companies to know

in advance what events need to be analyzed and when analysis must happen. IT must

store everything and analyze everything or risk missing the most important evidence of

operational lags, risks or rising customer trends. For security compliance reasons alone,

enterprises are required to maintain good logs, store logs for one year, secure these

logs—and review them daily.

An important consideration is whether staff is looking at the data with the right degree

of resolution. A low-resolution view lets support staff isolate a problem to, say, a specific

infrastructure tier and then pass the problem to a specialist—who will start all over again

diagnosing the problem with a different tool. While this common approach works, it is

time-consuming, expensive and disruptive. A more productive approach is to use a

high-resolution analysis that enables application support to diagnose a problem and

immediately begin its resolution.

4

Real-Time Analytics for Operational Insight

A steadily increasing number of operations staff throughout the IT economy are finding

analytics a compelling part of their tactical suites. Nearly half of respondents to a TDWI

survey revealed that they are engaged in real-time analytics for operational insight.

Roughly 25% of DevOps professionals surveyed by IDC reported a desire for analytics.

And the competitive benefits of real-time data are clear. An Aberdeen Group survey

revealed that executives who were engaged in real-time streaming analytics averaged

nearly 15% improvement in operational cash flow and overall profit. They reported a 6%

reduction in operating costs. And 70% of them reported that they are able to hold regular

operational reviews.

Indeed, analytic platforms designed to deliver operational insights are rising in

prominence. Yet for a company to act on trends and problems with precision and

immediacy, a real-time, operational intelligence system must allow users to analyze

perishable data while it still matters. This is essential in order to achieve the ever-

important business goals of keeping customer services levels high, applications running,

developers productive, and costs low. Transaction behavior, delivery delays, consumer

behavior: the value of this sort of data is ephemeral, its significance at first so high to

users and then diminishing rapidly as time passes.

5

This type of data has an expiration date. As Forrester Research asserted in a 2014 report,

“Business won’t wait. That is truer today than ever before because of the white-water

flow of data from innumerable real-time data sources. Market data, clickstream, mobile

devices, and sensors may contain valuable but perishable insights. Perishable, because

the insights are only valuable if [users] can detect and act on them right now.” For IT

Operations, these data sources also include Java logs, Syslog data, various server and

application metrics and transactions.

Too many times, developers are pulled from their critical and customary roles as coders of

innovative apps, roles that are essential to the growth of their businesses. They are instead

Figure 1: An example of an operational intelligence dashboard from jKool. The data displayed is

streaming into jKool from Log4j and Syslog Collectors.

6

thrust into triage assignments in application support, drafted into diagnosing problems that,

as the common perception goes; only they have the skills to address. They lose hours,

days, and weeks scanning and annotating logs, tracing transaction and message flows and

measuring application performance, their organizations finding no easy way to transfer their

skills to less expensive, less critical personnel. Often operational in origin, machine data is

scattered across multiple logs, servers and event infrastructure tiers.

In such a workflow, it can be very challenging for staff to piece together the story the data

has to tell. Yet the right form of real-time, operational intelligence—intelligence that brings

machine data into a coherent, consumable and configurable visualization—is a superb

way to scrutinize a broad range of performance metrics. From Java logs to Syslog,

metrics and transaction records, such intelligence can deliver instant insight users need to

Figure 2: Traditionally, Java developers are called in to diagnose application behavior by interpreting

log data as presented above on the left. Using jKool’s analytics and visualization the upper right

represents a presentation that Application Support can use.

7

keep the operation running, liberating developers to do their true jobs creating apps that

drive the business forward.

Professionals at every level in development and operations can take advantage of real-

time, operational intelligence to boost immediate insight into their machine data. Seeing

performance issues like troublesome trends, patterns and urgent problems as they unfold

is crucial—yet awareness is only half of the game. Action and decisiveness are important

capabilities as well. With real-time analysis highlighting perishable data at its most useful

heights, employees are empowered to respond to issues rapidly, to anticipate difficulties,

and to make fully informed decisions.

A real-time operational intelligence product, jKool offers immediate insight, simplified, swift

analytics and visualization to Java developers and DevOps running production, test, and

development environments. Users can observe Java transactions as they occur; teams

can consolidate all logs and metrics onto a single configurable web dashboard. With this

single pane of glass, staff no longer has to piece together stories from disparate logs

or tools. Users get a detailed record of their transactions stitched together, along with

metrics and logs, and are then able to see their flow of execution across applications,

servers and infrastructure tiers, as well as the environment context. This creates a high-

resolution image of application behavior.

Available as a SaaS offering, jKool allows IT departments to reduce time fixing problems

and spend more energy on building business resources, focusing on innovation, as they

are freed from providing endless support. Using SaaS, there are no servers, schema or

database or storage to manage. In either on-premises or using SaaS versions, jKool can

8

greatly accelerate the cadence of new releases, enabling the business to increase its

agility. As an open-source tool, jKool embraces the most compelling technologies in the

world today and makes trends and patterns reassuringly clear to users.

Figure 3: jKool Architecture is built on open-source technology orchestrated via FatPipes micro-services.

9

Addressing the Real Problem: Too Much Data, Too
Little Time

With operational realities generating immense, unorganized levels of data at a relentless

pace, many enterprises are unable to keep up with the quantity of data they are

accumulating. Institutions collect more data than they can manage, the sheer amount

and organization of the data making it difficult to achieve the instant insights staffs need

for the decision-making that keeps costs at suitable levels. The competitive advantage

that rests in such data is buried in its huge volume and its inconsistent organization.

Relational databases are taxed, scalability and performance lagging under the weight.

Professionals have no time or means to figure out what the data means quickly enough—

losing the opportunity to act on trends and patterns before the data’s potency wanes. If

organizations can move quickly enough, there is opportunity hidden in the data that can

provide value.

Support and development of mission-critical Java applications can be an area of

tremendous drain on IT departments. Manual analysis of logs and metrics is costly, slow,

and results in errors. Through jKool, users can streamline this responsibility, delivering fast

identification of problem areas and performance. Users can address the data with a mere

click or two. Machine data can be presented in a way that enables actionable insight into

misbehaving applications and business processes without requiring constant developer

involvement. Diagnostics are clear.

jKool permits organizations to leverage fewer expensive personnel in support, who will

not need to do heavy lifting to keep the business running. For development organizations,

10

this freedom means higher quality releases, delivered in less time. This can be a big boost

in overall productivity for all concerned: development, IT ops and DevOps.

Analytics in the moment are useful for IT to achieve aims like loss prevention, projecting

when users will run out of resources and rapid diagnosis of problems. These capabilities

are valuable to any number of industries in a diversity of contexts. The ability to simulate

(provided by jKool) an application is of great help to enterprise architects, who can use

this to improve the effectiveness of pending deployments, as they will be able to visualize

transaction dependencies and interactions prior to the actual deployment. They can then

adjust their plans based on what they learn from the simulation. jKool’s simulator enables

this important benefit.

Built to consume time-series machine data, jKool ingests, correlates and visualizes

this operational data in memory, in real time. As jKool consumes data, it automatically

stores, sequences, correlates, groups, enriches, synchronizes and computes ingested

data in-memory and in persistent storage, delivering the instant insight that positions an

enterprise to act with speed and confidence.

jKool Features

From 2012 to 2014, Forrester tracked a 66% increase in firms using streaming analytics.

Yet adoption has its challenges, as many of these solutions do not provide out-of-the-box

operational intelligence. In essence, such solutions are toolkits from which users must build

their own applications. Real-time visualization of streaming data is usually not provided.

Other offerings do not yet provide the breadth of functionality—including a useful query

language—that is needed to derive instant insight from the data ingested.

11

Easy to use and built to facilitate an array of queries and illustrate metrics in bold, versatile

graphics, jKool offers visualization capabilities to address all elements of Java and other

logging and metric sources. The system connects to several logging utilities: Log4j, SLF4J,

Logback and Syslog. It also ingests data from collectors for various extensions, including

JMX, Java EE, HTTP and Spark. jKool consolidates and summarizes all logs and metrics,

permitting users to detect anomalies and view trends in error rates over time. Self-service

capabilities enable users to add metrics via an open-source API, allowing an automatic

Figure 4: The Viewlets show two different views of a “stitched” transaction flow. The upper Viewlet shows

the flow on a geographical map, while the bottom Viewlet presents this as application topology.

12

track and trace of Java transactions. Offering a wide and

comprehensive view of the landscape, jKool automatically

stitches together transactions and scans problems in

operational flow and performance in order to determine problem

causality.

jKool’s quick-to-use language for analyzing behavior, jKQL,

communicates queries with a direct, precise, and logical

simplicity. Through jKQL, users initiate ad-hoc analysis of a

range of metrics. Using the jKQL language, users can talk

directly with their data and get answers. jKool’s process of

querying is designed to let the user learn things they didn’t

already know. For example, a Java developer might ask, “Get

worst 10 events fields applname order by elapsedtime desc

show as barchart” and receive a barchart representation of

the 10 most chatty classes over the last hour. The user can

then ask more questions for better insight into the causes and

realities of relevant operations. Users can drill down into the data

returned. They then select “analyze” and see a multi-panel chart

that shows event elapsed time, the volume of all activities and

user-selected snapshot data over time.

Stitching is a process of
connecting events from
seemingly unrelated sources,
much like putting together
a jigsaw puzzle from many
different pieces. These events
may occur at different times,
come from different applications
and have different attributes
– yet they are related to a
specific activity and tell a story
about your application: such as
payments, claims, searches,
orders, etc. The process of
stitching combines these events
to describe a lifecycle of a
composite activity spread across
multiple applications, compute
analytics and discover topology
and flow. The result is high-
resolution view of application
activities, improved root cause
analysis, dramatic reduction in
MTTR (mean time to problem
resolution) and increase in MTBF
(mean time between failures).

13

Figure 5: The above image shows a jKQL query that gets events, groups them by when they start and

puts the results into hourly buckets. In addition, the query shows how jKool automatically detects

anomalies. The Anomaly Chart uses Bollinger Bands and Exponential Moving Averages (EMAs) to detect

anomalies when an event crosses either the lower or upper bands.

Figure 6: This is an example of a real-time query. Notice the verb “Subscribe,” which tells jKQL to send

matching events as soon as they arrive, even before they are saved to disk.

14

Alternatively, a business user can enter, say, “get worst 50 orders for the last hour.”

jKool’s visualization graphics can display data in a number of different formats, including

candlesticks and trend lines. The graphics can then simultaneously show the elapsed time

for each order, the value of orders and the overall volume of events during that same time

period. The user can view the flow of execution of the order transactions and also isolate

them geographically.

jKQL lets users perform analysis using streaming operators. They can compare and

highlight differences between activities. Compatible with both browser and tablet formats,

jKQL displays results as tables, charts, scorecards, heat maps, candlesticks, or comparison

and topology. The visualization capabilities span:

• Real-time: Using in-memory analytics before events are written to disk, jKool can

display events and metrics as they arrive.

• Historical: jKool provides full analysis of historical data and enables comparison

between different time periods all using the same dashboard as real-time.

• Graphing: Visualization options include tables, scorecards, line charts, bar, column

charts, pie charts, area charts, summary views and more.

• Streaming operators: Comparison of metrics can involve EMAs, Bollinger Bands,

count, sum, min, max, avg, first, last, top, bottom latest, earliest, best, worst, largest,

smallest, shortest and more.

• GeoFencing: jKool’s GeoFencing capability can segment events and activities by

geolocation, plotting relationships and displays results on a map. jKool automatically

converts latitude and longitude to text locales.

15

• Comparisons: jKQL can designate metrics as master data and display other metrics in

comparison to main data.

• Automatic detection: jKool automatically detects anomalies and displays those using

statistical functions.

With a strong offering of features, jKool grants companies an easy set-up and a level

of insight and usability that gets staff acting on trends and problems in short order. For

developers, the benefits soothe a constant stress in modern IT departments: the endless

pulling of developers into the application support role, a reoccurring situation that drains so

much energy and time from their main mission.

Figure 7: The Viewlet at the top shows an analysis of time-series events using Bollinger Bands and

Exponential Moving Averages (EMAs). The Viewlet on the bottom is a comparison showing the

differences between events.

16

Operational Intelligence and the Developer

When an application misbehaves, a developer often has to sift through multiple log files

in order to trace the path of each application and find out what went wrong. With multi-

threaded applications, these logs can appear chaotic, each thread writing a log entry that

may have nothing whatsoever to do with the prior entry. Such a lack of coherence makes

diagnostics quite challenging and often requires staff using pencils and paper, chalk and

string to discover what happened. This is a tedious manual process that quickly becomes

quite difficult, with each application written to different log files, sometimes on different

servers and many times even on differing infrastructure tiers. Multiply this effort by a large

number of servers and the situation rapidly becomes unmanageable.

IT Ops can find it difficult to follow the flow of execution, requiring significant involvement

by developers, the most critical and expensive employees in the organization. Though

the purpose of this diagnostics effort is to understand performance issues, the flow of

execution as logged may not appear linear. In the jumble of distributed data, causality is

very difficult to discern.

Unfortunately, this type of diagnostics occurs all the time in modern IT departments. jKool

offers an alternative to this taxing app diagnostic model that is so commonly a default

response by companies. By feeding jKool with a range of data collectors, developers will

find the set up and preparation of the system easy to do.

jKool uses open-source collectors to stream machine data such as logs and metrics into

both on-premises or cloud-based SaaS platforms. These collectors are downloadable from

jKoolCloud.com with registration or, alternatively, from GitHub. Each collector enables data

gathering and delivery to jKool.

17

Java developers can use the Log4j Collector, an appender that allows developers to add

an additional target to the Log4j configuration without any edits to application code. SLF4j,

Log4J, and Logback users can consolidate all Java logs in a single pane of glass; these log

visualizations improve diagnostics and root cause identification. A truly comprehensive view

of the landscape emerges, as users can search log entries across applications and servers,

while annotation of log entries bolsters diagnostics.

Other application developers can make use of the simple RESTful API to send their data

to jKool.

DevOps or IT Ops can also deploy the StreamJMX Collector to send Java performance

metrics to jKool from any relevant Java servers in the enterprise’s infrastructure.

Downloadable on the jKool site, StreamJMX is a lightweight framework to stream and

monitor JMX-borne metrics. IT staffs traditionally monitor JVMs through remote JMX

monitoring tools, which requires the team to deploy and manage JMX configurations, ports,

and SSL. Such remote connectivity is notoriously weak and raises cyber vulnerabilities—

further burdening IT with security obligations.

StreamJMX allows developers to stream JMX metrics from JVM out to destinations

throughout the network. This functionality allows users to maintain a history of JMX metrics

across multiple JVMs. Streaming JMX from within JMV is often a more desirable alternative

to remote sampling when monitoring large number of JVMs, offering improved security (no

open JMX ports) and less administrative overhead associated with opening and securing

remote JMX ports and connections.

jKool allows for monitoring of JEE Web applications through HTTP Servlet Filter. Users can

measure performance, attenuations, and signals; dashboards can display variable histories

18

of response times. With entire organizations engaging these applications, IT can track end-

user behavior and location.

IT ops professionals using Syslog for system management and security can use jKool

to bring together logs from multiple servers on one screen. Viewlets can illustrate the

consolidated logs to help with assessing diagnostics and root cause. Users can search

Syslog entries across applications, which can be annotated.

With these collectors engaged, jKool automatically sequences, correlates, groups, enriches,

synchronizes and computes everything it can about the data as it arrives—immediately

providing a rich visualization to the user.

The collectors come with documentation describing deployment methods and details.

Before deploying a collector, users can test their visualization with jKool’s built-in Simulator.

This feature generates and displays a randomized version—at selected intervals and

volumes—of what users can anticipate in terms of viewing data.

Because jKool’s design prioritizes simple usage, once the data is flowing to it—through the

user-friendly jKQL query language and the detail and flexibility of the Viewlet visualizations—

less expensive IT staff can serve in support roles for the system.

Developers will find jKQL compatible with a host of data collectors. Equally critical to the

system’s design is the priority of perishable data, especially machine data that must be

captured and understood in the moment. Only then can professionals take the decisive

steps that lead to reduced costs and increased profits.

jKool is built on open-source software including the Apache Cassandra NoSQL DB from

DataStax, Apache Storm, Apache Spark and Apache Kafka. jKool’s FatPipes micro-

19

services architecture is designed to orchestrate these open-source technologies into a

solution offering extreme scalability and ultimate configurability. Complex event processing

delivers faster analytics from in-memory resources. This processing capability goes right

to the heart of the challenge—perishable data must be captured, analyzed and visualized

in real time. With open-source tools for data ingestion, developers can easily use jKool

for their needs for real-time operational intelligence. Developers and DevOps and IT ops

personnel engaged with the SaaS version also benefit from the luxury of having no servers,

databases, or schemas to maintain.

With scalability so valuable as operational data levels continue to rise, jKool’s Lambda

Architecture aims to handle vast volumes of complex, concurrent data streams. The system’s

compute grid automatically runs queries in parallel to enhance performance and elasticity.

Figure 8: jKool’s multi-panel “stock” chart for analyzing multiple data types over the same time intervals

to detect hidden relationships

20

Conclusion

Business is about anticipation and awareness—knowing what is happening, what could

happen, and how the company should act to resolve problems and outperform competitors.

The pace of operations today can offer tremendous amounts of data to businesses—

amounts that can intimidate and overwhelm as much as enlighten. The common approach

to data analysis is unable to match this pace. Developers lose too much of their valuable

time serving as ad hoc data managers, piecing together logs from disparate applications.

By the time they are able to discern patterns in the data, the opportunity to respond to

underperforming operations has vanished.

jKool provides awareness to such businesses by delivering clear, consumable operational

analytics to IT and professionals. The product allows users to query data and dive deep into

granular details to compare, summarize, and ultimately make swift business decisions.

Through jKool’s simplified user design, less expensive IT staff can serve in support roles for

the system. Prioritizing extreme scalability and ultimate configurability, jKool’s complex event

processing delivers faster analytics from in-memory resources. This processing strength goes

right to the heart of the challenge—perishable data must be captured in real time. With open-

source tools for data ingestion, developers can easily use jKool for their needs for real-time

operational intelligence. Developers, DevOps and IT Ops personnel engaged with the SaaS

version also benefit from the luxury of having no servers, databases, or schemas to maintain.

With scalability, swift visualization, and easy implementation, jKool aims to empower

companies to act with confidence in fast-moving times. With jKool delivering streaming,

high-resolution analytics, insights are more readily realized, staff can take more focused

action faster, time to remediation is shorter, and a crucial, ultimate aim is achieved: more

customers are satisfied with much better frequency.

