Study shows helmetless-tackling drills significantly reduce head impact
22 December 2015

UNH Football players perform intervention drills consisting of helmetless-tackling repetitions into an upright pad, tackling dummy, or a teammate holding a padded shield Credit: University of New Hampshire

The national debate around football-related head impacts, and their relationship to concussions and spinal injuries, continues to raise concern in the United States. Sparked by efforts to help make the sport safer for players, research at the University of New Hampshire has found that a novel set of helmetless-tackling drills are effective in reducing head impacts by 28 percent in one season.

The study, conducted by Erik Swartz, professor and chair of the department of kinesiology at UNH, was released early online and will be published in an upcoming issue of the *Journal of Athletic Training*. The study can be reviewed at: http://natajournals.org/doi/pdf/10.4085/1062-6050-51.1.06.

Research findings are for the first year of a two-year study that tested helmetless-tackling drills and their effectiveness in reducing head impact in 50 football players at the University of New Hampshire, a NCAA Division I team. The purpose was to see if this innovative technique, called the HuTTTM intervention program, could alter tackling behavior and ultimately reduce head injury exposure.

"The idea of taking off the football helmet during practice to reduce head impact may seem counterintuitive to the sport," said Swartz. "But the findings show that preventing head impacts, which can contribute to spine and head injuries like concussions, may be found in behavior modification like these drills."

The randomized controlled trial divided the athletes into two groups: an intervention group (25 players) and a control group (25 players). Before each workout session, an xPatch head-impact sensor was placed on the skin just behind the right ear (over the right mastoid) of each athlete. The xPatch monitored the frequency, location, and acceleration of all the head impacts.

Football players in the intervention group performed five-minute tackling drills without their helmets and shoulder pads twice a week in preseason and once a week during football season. The intervention drills consisted of repetitions of proper tackling into an upright pad, tackling dummy, or a teammate holding a padded shield, at a 50 to 75 percent effort. The control group performed non-contact football skills at the same time, rate and duration. Both groups were supervised by the UNH football coaching staff. At the end of one football season, the intervention group that had performed the helmetless-tackling training program had experienced 30 percent fewer head impacts per exposure than the control group.

"This behavior modification is not only about alleviating head impacts that can cause injuries now, but reducing the risk of concussive impacts that can lead to long-term complications later in life," said Swartz. "These helmetless drills could help to make it safer to play football."
According to the study, high school and college football players can each sustain more than 1,000 impacts in a season, while youth players may sustain 100 during that same timeframe. "The extent to which this intervention may yield similar outcomes in younger players with less experience and physical maturity is still unknown. We are currently in the first year of a high school study focused on four high schools in New Hampshire," adds Swartz.

If future investigators replicate the current findings, Swartz says the eventual adoption of helmetless-tackling training may improve public health and decrease associated economic burden by reducing the risks of football-related head and neck injuries.

Provided by University of New Hampshire

Early Results of a Helmetless-Tackling Intervention to Decrease Head Impacts in Football Players

Erik E. Swartz, PhD, ATC, FNATA; Steven P. Broglio, PhD, ATC†; Summer B. Cook, PhD*; Robert C. Cantu, MD, FACS‡; Michael S. Ferrara, PhD, ATC, FNATA*; Kevin M. Guskiewicz, PhD, ATC, FNATA, FACSM§; Jay L. Myers, PhD, ATC*

*University of New Hampshire, Durham; †University of Michigan, Ann Arbor; ‡Emerson Hospital, Concord, MA; §University of North Carolina, Chapel Hill

Objective: To test a helmetless-tackling behavioral intervention for reducing head impacts in National Collegiate Athletic Association Division I football players.

Design: Randomized controlled clinical trial.

Setting: Football field.

Patients or Other Participants: Fifty collegiate football players (intervention = 25, control = 25).

Intervention(s): The intervention group participated in a 5-minute tackling drill without their helmets and shoulder pads twice per week in the preseason and once per week through the season. During this time, the control group performed noncontact football skills.

Main Outcome Measure(s): Frequency of head impacts was recorded by an impact sensor for each athlete-exposure (AE). Data were tested with a 2 × 3 (group and time) repeated-measures analysis of variance. Significant interactions and main effects (P < .05) were followed with t tests.

Results: Head impacts/AE decreased for the intervention group by the end of the season (13.84 ± 7.27 versus 9.99 ± 6.10). The intervention group had 30% fewer impacts/AE than the control group by season’s end (9.99 ± 6.10 versus 14.32 ± 8.45).

Conclusion: A helmetless-tackling training intervention reduced head impacts in collegiate football players within 1 season.

Key Words: injury prevention, athletic injuries, head and neck injuries

Key Points

• Given proper training, education, and instruction, collegiate football players can safely perform supervised tackling and blocking drills in practice without helmets.
• Helmetless tackling eliminates the false sense of security a football player may feel when wearing a helmet.
• Younger football players and those with less experience may require modifications to the intervention to realize a positive effect. More research is needed on players at these levels before widespread implementation.

Head impacts in football players are directly associated with brain and spine injury, have been proposed to be associated with chronic injuries such as chronic traumatic encephalopathy, and have become a national concern. High school and college football participants can experience more than 1000 head impacts in a single season.1,2 Youth football players may sustain more than 100 impacts in a season, with linear acceleration greater than 80g reported.3 To mitigate the risk of head-impact injury, researchers, league officials, and administrators have sought to improve helmet technology, reduce the number of allowable contact practices, and alter game rules. Although each of these factors has merit, none directly address the common fundamental cause: impacts to the head. In fact, current efforts directed at improving helmet technology may promote a false sense of security4 and perpetuate the use of the head as a point of contact during play.1,5

To directly address these concerns, we initiated a study to investigate the effectiveness of a helmetless-tackling behavioral intervention to reduce head-impact exposure in a National Collegiate Athletic Association Division I football program. We share important findings on our primary variable of interest after the first year of data collection.

METHODS

Fifty National Collegiate Athletic Association Division I Football Bowl Subdivision collegiate football players with at least 2 years of eligibility were enrolled in a 2-year prospective randomized controlled investigation for the 2014 and 2015 seasons. Before consenting to the study, participants were briefed on the design, purpose, risks, and benefits of the study as approved by the university’s institutional review board. Participants were stratified by position (offense or defense) and randomized to an intervention (n = 25) or control (n = 25) group. Before the first preseason practice, participants were assigned an xPatch head-impact sensor (X2 Biosystems, Inc, Seattle,
Before the statistical analysis was performed, we reduced the raw impact data in the following manner. The X2
impact measurement software first removed any spurious linear-acceleration data that did not meet the propriety
algorithm criteria for a head impact. A second proprietary filtering method (waveform parameters) was used during
data export to remove spurious linear-acceleration data with additional layers of analyses, including the area under the
curve, number of points above threshold, and filtered versus unfiltered peaks. The remaining data were reduced after
visual examination using Excel (version 2013; Microsoft Corporation, Redmond, WA). Impact time stamps (hour:
minute:second) were screened for identical and sequential
patterns for each participant (using Excel conditional
formatting and duplicate values) with multiple (>2) linear
accelerations having the same hour:minute:second time
stamp in quick succession milliseconds after the preceding
impact(s) had been removed. Impact time stamps were also
cross-referenced with AE records for practices and games.
In addition, AEs coded as being present for a game were
further cross-referenced with the football staff’s attendance
documents. Impact data recorded erroneously on days when
an xPatch was activated although the athlete was unable to
practice or did not enter a game were removed.
The reduced and filtered data were then organized
categorically into 3 temporal sessions. The first time point
represents the end of preseason, when HuTT interventions
were carried out twice per week. The remaining time points
(middle and end of the season) accounted for an equal
distribution of HuTT interventions (once per week) over the
course of the competitive season. Descriptive information
for each session relative to potential exposures (practices
and games) and number of interventions are found in the
Table.

Table. Helmetless-Tackling Training Program Interventions and Potential Athlete-Exposures

<table>
<thead>
<tr>
<th></th>
<th>Preseason</th>
<th>Competitive Season</th>
<th>Midpoint</th>
<th>End</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date range</td>
<td>August 6–27, 2014</td>
<td>August 30–October 25, 2014</td>
<td>October 26–December 20, 2014</td>
<td></td>
</tr>
<tr>
<td>Weeks, No.</td>
<td>3</td>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Interventions</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Total potential athlete-exposures</td>
<td>19</td>
<td>36</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Practices</td>
<td>19</td>
<td>29</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Games</td>
<td>0</td>
<td>7</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

*The first half of the competitive season included 2 open weeks (no game, practice only). The second half included 3 postseason playoff games.

Data Reduction

Before the statistical analysis was performed, we reduced the raw impact data in the following manner. The X2
impact measurement software first removed any spurious linear-acceleration data that did not meet the propriety
algorithm criteria for a head impact. A second proprietary filtering method (waveform parameters) was used during
data export to remove spurious linear-acceleration data with additional layers of analyses, including the area under the
curve, number of points above threshold, and filtered versus unfiltered peaks. The remaining data were reduced after
visual examination using Excel (version 2013; Microsoft Corporation, Redmond, WA). Impact time stamps (hour:
minute:second) were screened for identical and sequential
patterns for each participant (using Excel conditional
formatting and duplicate values) with multiple (>2) linear
accelerations having the same hour:minute:second time
stamp in quick succession milliseconds after the preceding
impact(s) had been removed. Impact time stamps were also
cross-referenced with AE records for practices and games.
In addition, AEs coded as being present for a game were
further cross-referenced with the football staff’s attendance
documents. Impact data recorded erroneously on days when
an xPatch was activated although the athlete was unable to
practice or did not enter a game were removed.
The reduced and filtered data were then organized
categorically into 3 temporal sessions. The first time point
represents the end of preseason, when HuTT interventions
were carried out twice per week. The remaining time points
(middle and end of the season) accounted for an equal
distribution of HuTT interventions (once per week) over the
course of the competitive season. Descriptive information
for each session relative to potential exposures (practices
and games) and number of interventions are found in the
Table.

Statistical Analysis

The frequency of head impacts recorded from the xPatch
was normalized to each AE in the preseason and middle
and end of the season. We first inspected the data visually
using Q-Q plots and box plots. Skewness and kurtosis were
assessed, and the Shapiro-Wilk test of normality was conducted. The data were slightly skewed to the left and
kurtotic at the midpoint and end of the season and were not
normally distributed according to the Shapiro-Wilk test ($P < .01$). The sample variances and covariances were equal
according to the Levene test of equality of variances and
Box test of equality of covariance matrices (all P values >
.05). The frequencies of helmet impacts per AE in raw and
log-transformed data were compared between the groups
with a 2×3 repeated-measures analysis of variance.
Significant interactions and main effects ($P < .05$) were
followed with dependent and independent t tests. In this
preliminary study, we did not perform Bonferroni correc-
tions to control the familywise error rate. Similar results
were obtained from the raw and log-transformed data, and
the results from the raw analyses are reported.

KEY FINDINGS

The helmetless-tackling training intervention resulted in
a 28% reduction in head-impact frequency per AE by the
end of the season, whereas the control group’s head impacts
remained the same (13.84 ± 7.27 and 9.99 ± 6.10,
The notion of removing the football helmet for discrete and regular periods during practice to reduce head-impact frequency is counterintuitive to the sport. However, these findings elucidate the risk-compensation phenomenon. That is, a football helmet is designed to protect players from traumatic head injury, but it also enables them to initiate and sustain head impacts because of the protection it affords. Risk compensation helps to explain the evolved behavior of “spearing” and the associated rise in catastrophic head and neck injuries that paralleled the application of the hard outer shell to the football helmet in the 1950s and 1960s. Hence, improving protective equipment, in and of itself, will likely not resolve the risk of concussion and spine injury in football. Rather, the solution may be found in behavior modifications that directly minimize head impacts during play.

The extent to which this intervention may yield similar outcomes in younger players with less experience and incomplete physical maturation is unknown. The intervention may need to be modified for age and experience. Furthermore, we do not know if the benefits derived from the intervention will persist or if, as with other fundamental sport skills, they should be rehearsed on a regular basis, regardless of performance level, to avoid decay. These factors require additional research.

CONCLUSIONS

Should future investigators replicate our findings, the eventual widespread adoption of helmetless-tackling training can improve public health and decrease the associated economic burden by reducing football-related head and neck injuries and the risk of long-term neurologic deficits. This is of vital importance for younger, more vulnerable populations.

REFERENCES

Address correspondence to Erik E. Swartz, PhD, ATC, FNATA, University of New Hampshire, New Hampshire Hall, 124 Main Street, Durham, NH 03824. Address e-mail to eswartz@unh.edu.