
Real-Time z/OS DB2 Database Activity Monitoring
from the CorreLog Agent with dbDefender™

D
atabase Activity Monitoring (DAM) is defi ned by Gartner as “… tools that can be used to support the
 ability to identify and report on fraudulent, illegal or other undesirable behavior, with minimal impact on
 user operations and productivity…”i This paper describes how CorreLog

dbDefenderTM DAM Agent for z/OS, in conjunction with the CorreLog Correlation Server
or any other SIEM console, may be used to integrate real-time Database Activity
Monitoring (DAM) into a corporate SIEM solution.

dbDefenderTM DAM Agent can be part of a compliance program for PCI DSS, Sarbanes-
Oxley, HIPAA, Graham-Leach-Bliley (GLB), and/or FISMA. All of these regulatory
standards are concerned with the integrity and security of data, and DAM Agent may
be used to audit fi le and database access. The following are some of the activities that
must be audited under one or more of these regulatory standards.

Privileged User Monitoring
The PCI DSS standard (10.2) requires automated audit trails for all actions taken
by any individual with root or administrative privileges, such as a system programmer or database administrator.
By default, dbDefender™ creates a real-time automated audit trail for all privileged users using DB2 audit IFCIDii
361. This is a minimally intrusive trace type as it is only activated for administrative actions, not routine database
accesses. From then on, all actions by privileged users will be logged to your SIEM console. The log message will
include the user ID, the text of any command or SQL statement executed, a code for the specifi c action taken
(“Priv: SELECT” or “Priv: Stop or Start Trace”), the job or CICS transaction name, and the name of the specifi c
database object affected. Two examples are as follows:

1. A privileged user displaying the entire list of database tables from the DB2 instance. This action might be
benign and it might be a malicious “fi shing expedition.” (CorrID: RU018BD3 shows the z/OS job name.)

 DB2: Subsys: DA1L - IFCID: 361 - UserID: RU018B - AuthID: RU018B -
CorrID: RU018BD3 - Auth: SYSADM - Priv: SELECT - ObjType: Table or
view - Cmd: SELECT * FROM SYSIBM.SYSTABLES - SrcQual: SYSIBM - Src:
SYSTABLES

i http://www.gartner.com/it-glossary/database-activity-monitoring-dam/
ii DB2 SMF trace record types are identifi ed by “IFCID number.” IFCID stands for “instrumentation facility component identifi er,” which is
simply another way of saying “trace record type.” There are about 400 record types or IFCIDs, numbered between 1 and 511. Each IFCID
type record has a specifi c layout and describes a specifi c event.

www.correlog.com

2. A privileged user stopping all DB2 traces. This action is extremely suspicious as it indicates someone trying to
“cover their tracks.”

DB2: Subsys: DA1L - IFCID: 361 - UserID: None - AuthID: SYSOPR - CorrID:
022.CKPA0201 - Auth: SYSADM - Priv: Stop or Start Trace - ObjType: User
Auth - Cmd: -STOP TRACE(*)

Invalid Logical Access Attempts
The PCI DSS standard requires that you “implement automated audit trails for … invalid logical access attempts.” By
default, dbDefender™ audits invalid logical access attempts by forwarding IFCID 140 messages in real time to your
SIEM console. IFCID 140 is a low overhead trace because it is only invoked for failed accesses, not every access. For
example, note the logging of the user ID, job name (RU018ADS), and the submitting user’s JES2 node, RACF group,
and “Port of Entry” (POE, the terminal name or other source of the attempted access). Notice that the specifi c failed
privilege (SELECT) and object type is identifi ed. (Many of these “human-readable” descriptions are also available
from dbDefender™ as numeric codes if that form is preferred.)

DB2: Subsys: DA1L - IFCID: 140 - UserID: RU018A - AuthID: RU018A -
CorrID: RU018ADS - Priv: SELECT - ObjType: Table or view - SrcQual:
CORE1010 - Src: NEWPHONE - ExitRet: -1 - Lang1: Dynamic - Lang3: None
- Node: JES2SYSB - Group: RESTRICT - POE: INTRDR - Sql: SELECT * FROM
CORE1010.NEWPHONE

Creation and Deletion of System-Level Objects
The PCI DSS standard also requires the automated logging of “audit trails for … creation and deletion of system-
level objects.” dbDefender™ logs an audit trail for the creation and deletion of DB2 data structures by formatting
messages for IFCID 97. These messages audit DB2’s use of IDCAMSiii commands to create system-level data objects.
IFCID 97 is minimally intrusive because it is generated only for the deletion or creation of data spaces and similar
system-level objects. The example below shows the deletion and creation of system objects for the CORED10U.
NEWPHONE table.

DB2: Subsys: DA1L - IFCID: 97 - UserID: RU018B - AuthID: RU018B -
CorrID: RU018BDL - RC: 0 - Cmd: DELETE DA1LDB.DSNDBC.CORED10U.NEWPHONE.
I0001.A001 PURGE;

DB2: Subsys: DA1L - IFCID: 97 - UserID: RU018B - AuthID: RU018B
- CorrID: RU018BDL - RC: 0 - Cmd: DEFINE CL(NAME(DA1LDB.DSNDBC.
CORED10U.NEWPHONE.I0001.A001) NOERASE LIN
OWNER(SY002A) RUS SPEED CISZ(4096)) DATA
(NAME(DA1LDB.DSNDBD.CORED10U.NEWPHONE.
I0001.A001) KB(00001440 00000720)
OWNER(SY002A) SHR(3,3) RUS VOL(‘* ‘));

Data Access Monitoring
The PCI DSS standard (10.2) requires the logging of all accesses to
cardholder data. HIPAA and GLB also regulate patient or account
holder data access. dbDefender™ by default logs all IFCID 143
and 144 records. These records audit critical table writes and
iii IDCAMS -- the AMS stands for Access Method Services -- is the z/OS utility that DB2
invokes to create the disk fi les that DB2 uses to store data and indexes.

2

7

reads respectively. To create an automated real-time audit trail for all accesses to specifi c DB2 tables you must
specify AUDIT access where access is CHANGES to audit-only writes, or ALL to audit both reads and writes, for each
DB2 table to be audited. You may specify AUDIT when the table is created or subsequently with an ALTER TABLE
statement.

Once these commands are in effect, dbDefender™ will forward a message every time one of the specifi ed tables
is read (IFCID 144) or written (IFCID 143) as requested by the ALTER. The following is an example of a message
indicating a read of an audited database.

DB2: Subsys: DA1L - IFCID: 144 - UserID: RU018B - AuthID: RU018B -
CorrID: RU018BD3 - DBID: 265 - PSID: 4 - OBID: 18

Granted, this is not the most user-friendly message in the world. You can see the user ID and the job name (CorrID:
RU081BDR) but the database object is identifi ed only by a database ID, page set ID, and object ID. Fortunately, it is
not hard to relate those to a specifi c table. You will probably be monitoring only a relatively small number of tables,
and DB2 maintains them in an easily accessible table, SYSIBM.SYSTABLES. To relate those ID numbers to an actual
table name, it is only necessary to refer to the results of the following query:

SELECT DBID, OBID, OWNER, NAME FROM SYSIBM.SYSTABLES

The results of the query are relatively stable and may be saved for future reference. For example, on the test system,
DBID 265 and OBID 18 identify DSN81010.EMP, one of the tables we are auditing.

The amount of overhead is dependent on the number of tables audited and the frequency of access to those tables.
DB2 minimizes the overhead by generating only one message per commit, not one for every SELECT, INSERT or
UPDATE.

Other Audits
IFCID 24 and 25 record the execution of DB2 utilities. Utility
execution is important to audit because in some cases utility
access to DB2 tables is not recorded by other traces, and
because Sarbanes-Oxley requires management controls
assuring the viability data backups. Utility auditing is low
overhead because utilities are only run for tasks such as
loading or copying databases, and only a small number of
records are written for each utility job.

DB2: Subsys: DA1L - IFCID: 24 - UserID: RU018B - AuthID: RU018B -
CorrID: RU018BDL - UtilID: DSNTEX - DBID: 274 - PSID: 5 - UtilNm: LOAD -
Phase: UTILTERM - DB: CORED10U - Obj: NEWPHONE - Items: 42

IFCID 62 audits the execution of DDL statements. (DDL is Data Defi nition Language: statements used to defi ne
tables and similar DB2 objects.) IFCID 62 is a very low
overhead trace as it is invoked only for the execution of
DDL.

DB2: Subsys: DA1L - IFCID: 62 -
UserID: RU018B - AuthID: RU018B -

www.correlog.com

4

CorrID: RU018BDL - StmtType: Drop storage group - ObjType: Storage group
- Name: COREG10U

IFCID 90 and 91 messages audit DB2 console commands and their completion return and reason codes.

DB2: Subsys: DA1L - IFCID: 90 - AuthID: RU018B - CorrID: 023.GCSCN602 -
Cmd: -STA TRA(AU) C(30) IFCID(247,350)

DB2: Subsys: DA1L - IFCID: 91 - UserID: None - AuthID: RU018B - CorrID:
023.GCSCN602 - RC: 0 - Reas: 0

IFCID 141 messages audit explicit grants and revokes of DB2 object access:

DB2: Subsys: DA1L - IFCID: 141 - UserID: RU018B - AuthID: RU018B
- CorrID: RU018BD3 - Grantor: RU018B - Access: Grant - ObjType:
Application plan - AuthType: AuthID - Lang1: Dynamic - Lang3: None -
Sql: GRANT BIND, EXECUTE ON PLAN RU018PHN TO RU018A

Digging Deeper on Audited Tables
Suppose that you require more detail regarding the accesses to an audited table. Consider this IFCID 144 message
again:

DB2: Subsys: DA1L - IFCID: 144 - UserID: RU018B - AuthID: RU018B -
CorrID: RU018BD3 - DBID: 265 - PSID: 4 - OBID: 18

We know from the IFCID 144 message that job RU018BD3 running on behalf of user RU018B reads Database 265
Object 18, and we can tell by querying SYSIBM.SYSTABLES that it means DSN81010.EMP, but what exactly did it do?
The answer is found in IFCID 145, also audited by dbDefender™. IFCID 145 shows us, for audited tables, the exact
SQL statement that was executed:

DB2: Subsys: DA1L - IFCID: 145 - UserID: RU018B - AuthID: RU018B -
CorrID: RU018BD3 - Loc: NA01DA1L - Collection: DSNTEP4 - Prog: DSN@
EP4L - Token: 1914f7b21db184f0 - StmtType: SELECT QUERY Lang1: Dynamic
- Lang3: None - Isolate: CS - DBID: 265 - OBID: 18 - Sql: SELECT * FROM
DSN81010.EMP WHERE EMPNO = 36

(IFCID 145 tracing can also economical because a record is written only for the specifi c tables you choose to audit,
and because the preparation, as opposed to the execution, of SQL statements is often relatively infrequent.) You
can relate the IFCID 145 message to the IFCID 144 message
that follows it because both will have the same Correlation ID
(CorrID).

Static and Dynamic SQL
If you have been exposed to SQL primarily through ODBC
then you are probably used to SQL statements such as the
above SELECT. DB2 supports SQL like this, but it may be the
exception rather than the rule in most mainframe shops. DB2
refers to this type of statement as “dynamic SQL” because
the SQL is constructed “dynamically,” moments before it

is executed. (Notice “Lang1: Dynamic” in the message above.) On the other hand, much or most of the SQL in
mainframe shops is what DB2 terms “static SQL.”

Static SQL is embedded in a COBOL or other mainframe source language program and compiled into a binary form
and fi xed when the program is built – hence the term “static” – for reasons of performance and security. DB2 refers
to this process of “fi xing” SQL as “preparation” and “binding.”

Auditing static SQL is somewhat more complex than auditing dynamic SQL. If the programmer could only write
statements like the above in which something like EMPNO = 36 was hard-coded then the resulting program would
be infl exible and not very useful. Instead, a COBOL programmer would write a static DB2 SQL statement (inside a
COBOL program) something like

UPDATE VEMPLP SET PHONENUMBER = :NEWNO WHERE EMPLOYEENUMBER = :ENO

For readers unfamiliar with static SQL, the colon prefi xes on :NEWNO and :ENO indicate that they are COBOL
program variables rather than SQL keywords, and that the run-time contents of NEWNO and ENO are to be used
as though they were part of the SQL statement. DB2 refers to NEWNO and ENO as “host variables.” Adding to the
complexity, notice also that the programmer has referred to the monitored table, DSN81010.EMP by means of a DB2
View, VEMPLP.

From a SIEM point of view, static SQL presents two major challenges:

1. By the time the RDBMS action is actually performed, the original SQL statement is gone, having been compiled
before; and

2. In addition to the text of the SQL UPDATE statement, you might want to know the run-time contents of the host
variables NEWNO and ENO.

If the appropriate audit and IFCID 145 tracing are in effect at the time the COBOL program is compiled, then
dbDefender™ would log a message something like

DB2: Subsys: DA1L - IFCID: 145 - UserID: RU018B - AuthID: RU018B
- CorrID: RU018BDC - Loc: NA01DA1L - Collection: RU018PHN - Prog:
DSN8BC3 - Token: 1958afbc1a3c8a1a - StmtType: 234 - Isolate: S -
Lang1: See Lang3 - Lang3: IBM COBOL - Stmt#: 541 - StmtID: 11860 -
DBID: 265 - OBID: 18 – Sql: UPDATE VEMPLP SET PHONENUMBER. = : H WHERE
EMPLOYEENUMBER = : H

Notice the DBID: 265 and OBID: 18, identifying this statement as accessing DSN81010.EMP, even though it is
accessed through a View. Notice that the host programming source language (IBM COBOL) is identifi ed. Also, in the
message, the host variables NEWNO and EMPLOYEENUMBER are indicated with the placeholder “: H.”

What about those host variables? Without the contents of the host variables we only know that some row of the audited
table was updated to some value. If you really want the
complete story, then it is necessary to use dbDefender™
to also audit IFCID 247. An example of the two IFCID 247
messages resulting from execution of the above statement
follow:

5

www.correlog.com

6

DB2: Subsys: DA1L - IFCID: 247 - UserID: RU018B - AuthID: RU018B -
CorrID: RU018BDR - Loc: NA01DA1L - Pkg: RU018PHN - Prog: DSN8BC3 -
Token: 1958afbc1a3c8a1a - Stmt#: 541 - Type: 452 - SQLDA#: 2 - Data:
“000230”

DB2: Subsys: DA1L - IFCID: 247 - UserID: RU018B - AuthID: RU018B -
CorrID: RU018BDR - Loc: NA01DA1L - Pkg: RU018PHN - Prog: DSN8BC3 - Token:
1958afbc1a3c8a1a - Stmt#: 541 - Type: 452 - SQLDA#: 1 - Data: 00 “4265”

In the above formatted messages we can see the contents of the two host variables: 4265 and 000230. We know
which is the fi rst and which is the second host variable because the message includes the “SQLDA#.” So we know
that the run-time contents of ENO (the employee number) was 000230 and therefore that the DB2 row for employee
000230 was updated to a phone number of 4265.

On a busy system, we can relate the IFCID 247 run-time messages to their corresponding IFCID 145 compile-time
messages because both contain the same Token value – a unique value assigned by DB2 – and both reference the
same line number of the original COBOL program (Stmt#: 541).

Performance and Resource Utilization
CorreLog realizes the importance of having a minimal impact
on DB2 performance and z/OS system utilization. The above
traces were all chosen with consideration of the impact on DB2
performance. dbDefender™ facilitates limiting traces to particular
plans, user IDs, etc., a technique that is recommended for improving
the performance of the traces. In addition, dbDefender™ has the
unique ability to further reduce the impact of DB2 trace records by
instructing SMF, on a record by record basis, to suppress logging
installation-specifi ed records to the SMF data sets. So, for example,
if you enable IFCID 145 strictly for dbDefender™, and do not require IFCID 145 records in your SMF logs, then you
can instruct dbDefender™ to tell SMF not to write IFCID 145 records to disk. By not logging these SMF records to
disk, the performance impact is further reduced.

Additional Options
Additional real-time auditing options are available in dbDefender™ for use as desired.

IFCID 3 shows accounting counters by DB2 instance:

DB2: Subsys: DA1L - IFCID: 3 - AuthID: LDAPSRV - CorrID: LDAPSRV - Plan:
DSNACLI - OpID: LDAPSRV - UserID: LDAPSRV - Trans: LDAPSRV - WrkSta:
RRSAF - Loc: NA01DA1B - LU: NA01DA1B - Conn: RRSAF - SQL: {Create
Synonym: 1 - Create Store Group: 1 - Drop Index: 1}

IFCID 58 audits the completion of every SQL operation. Error and warning conditions are indicated. The IFCID
message may be correlated to other message numbers by means of the Token, Stmt#, and StmtID fi elds.

DB2: Subsys: DA1L - IFCID: 58 - UserID: RU018B - AuthID: RU018B -
CorrID: RU018BDR - SQLcode: 0 - SQLerrm: None - SQLerrp: DSN - SQLwarn:
None - Stmt#: 541 - Loc: NA01DA1L - Collection: RU018PHN - Prog: DSN8BC3
- Token: 1958afbc1a3c8a1a - StmtType: Static - StmtID: 11928

IFCID 63 and IFCID 350 audit the SQL text for all SQL requests, not just audited tables (dynamic SQL at execution
time and static SQL at compile time). IFCID 63 is somewhat easier to parse than IFCID 350, but IFCID 63 messages
truncate SQL statements at 5000 bytes, whereas one or more IFCID 350 messages contain the complete text of
every SQL statement no matter how long (as do IFCID 145 messages).

DB2: Subsys: DA1L - IFCID: 350 - AuthID: RU018B - CorrID: RU018BD3
- Plan: DSNTP410 - OpID: RU018B - UserID: RU018B - Trans: RU018BD3 -
WrkSta: BATCH - Loc: NA01DA1L - NetID: USASG - LU: NA01DA1L - Conn:
BATCH - StmtType: Dynamic - StmtID: 0 - StmtSeg: Only - Sql: DECLARE
TELE3 CURSOR FOR SELECT * FROM VPHONE WHERE LASTNAME = : H AND FIRSTNAME
LIKE : H

IFCID 107 messages audit every table open and close, not just audited tables. They are also an additional source of
correlation between DBID/OBID pairs and their corresponding database and table names.

DB2: Subsys: DA1L - IFCID: 107 - UserID: RU018B - AuthID: RU018B -
CorrID: RU018BDL - Type: Open - DBID: 274 - DBName: CORED10U - PSID: 5 -
ObjName: NEWPHONE

IFCID 239 messages audits plan usage by collection and program name:

DB2: Subsys: DA1L - IFCID: 239 - Subsys: DA1B - AuthID: LDAPSRV -
CorrID: LDAPSRV - Plan: DSNACLI - OpID: LDAPSRV - UserID: LDAPSRV -
Trans: LDAPSRV - WrkSta: RRSAF - Loc: NA01DA1B - NetID: USASG - LU:
NA01DA1B - Conn: RRSAF - Pkg: {Collection: DSNAOCLI - Prog: DSNCLIC1}
- Pkg: {Collection: DSNAOCLI - Prog: DSNCLIMS} - Pkg: {Collection:
DSNAOCLI - Prog: DSNCLINF} - Pkg: {Collection: DSNAOCLI - Prog:
DSNCLIC1} - Pkg: {Collection: DSNAOCLI - Prog: DSNCLIMS} - Pkg:
{Collection: DSNAOCLI - Prog: DSNCLINF}

The Cost of Corporate Breach...
Each week brings news of another embarrassing corporate data breach at an average per-incident cost of $6.75
million, as reported by the Ponemon Institute. Regulatory standards require that companies monitor their data
for suspicious activity. The CorreLog Agent with dbDefender provides that monitoring with minimal impact on
performance or your existing operations, and integrates it with the SIEM console you already use. “It’s not a matter
of if, but when,” says Anne De Vries of Wells Fargo Special Risks.

About the Author
Charles Mills is the Director of Advanced Projects for CorreLog. He has been
developing mainframe software products since 1973. He founded a software
company in 1975 and sold it in 1998. Since then he has offered consulting in
software company acquisition due diligence, and in 2009 returned to software
development with CorreLog.

www.correlog.com

7

About CorreLog, Inc.
CorreLog, Inc. is the leading independent software vendor (ISV) for cross-platform IT security log management
and correlation. Our solutions provide the best-in-class, real-time event log management across both distributed
(Windows/UNIX/Linux) and mainframe platforms (IBM z/OS). Event Log management is ready-format for any name
brand enterprise SIEM (Security Information & Event Management) correlation servers.

CorreLog’s fl agship product, SIEM Agent for z/OS, is the fi rst real-time z/OS event monitoring solution available,
converting mainframe security events such as RACF, ACF2, Top Secret, and DB2 accesses into syslog events
compatible with enterprise SIEM systems. CorreLog’s SIEM Agent has been designed to comply with standards set
forth by PCI DSS, HIPAA, IRS Pub. 1075, SOX, GLBA, FISMA, NERC, and many other regulatory standards. For more
information on CorreLog products, please visit www.correlog.com.

1004 Collier Center Way, Suite 103 · Naples, Florida 34110 · 1-877-CorreLog · 239-514-3331 · info@correlog.com

© CorreLog 2016. All rights reserved.

SIEM Agent for IBM z/OS converts event messages to Syslog format and delivers them in real time directly to your SIEM console
for end-to-end enterprise security visibility.

