March 30th, 2017

President Donald J. Trump
The White House
1600 Pennsylvania Avenue, NW
Washington, DC 20500

Dear Mr. President:

We, the undersigned physicians, scientists, and organizations, write to express our strong support for an independent Vaccine Safety Commission comprised of stakeholders from the public health, scientific, and consumer advocacy communities. Given that the rates of chronic childhood conditions, including neurodevelopmental disorders such as autism, have increased dramatically, it is imperative that we convene an unbiased commission to study vaccine safety and establish whether or not our expanding vaccination schedule is contributing to the significant rise of serious health problems in the United States.

An independent Vaccine Safety Commission is necessary due to allegations of scientific misconduct from within the government agency, Centers for Disease Control and Prevention, which is responsible for vaccine recommendations. CDC scientist William Thompson, Ph.D., stated: “I regret that my coauthors and I omitted statistically significant information” related to specific risks of the MMR vaccine. Furthermore, a dozen anonymous CDC scientists recently formed an organization, Scientists Preserving Integrity, Diligence and Ethics in Research (SPIDER), which contends that while most of the scientists at CDC operate with the utmost integrity and ethics, “some staff are intimidated and pressed to do things they know are not right,” and that circumventing the mission and the Congressional intent for the agency “is becoming the norm and not the rare exception.”

We are convinced that the science on vaccine safety is not settled. In fact, science, which is a process of inquiry rather than demonstration, is never settled. It is very likely that the causes of neurodevelopmental and neuroimmune disorders are numerous and synergistic. It is biologically plausible that vaccines or vaccine ingredients are among contributing factors. There is an emerging body of peer-reviewed biomedical research relevant to vaccine safety concerns, suggesting: a) deleterious effects of immune activation on prenatal and neonatal brain development, which is when some vaccines are administered; b) neurotoxic and neuroinflammatory potential of aluminum adjuvant-containing vaccines; and c) risks of acetaminophen exposure during pregnancy, neonatal development, as well as post-vaccination. This body of research provides a strong rationale for re-examining the safety of prenatal and childhood vaccination recommendations and adjunct medications in relation to long-term outcomes in children’s health. We have attached an addendum with some of the studies representing each of these important areas of research.

Mr. President, we welcome an independent Vaccine Safety Commission that will collect and review all of the available scientific evidence, recommend further vaccine safety studies, and help shape public health policy that prioritizes the health of the American people.

Sincerely,

Paul Thomas, MD, FAAP, ABIHM
Adrienne Carmack, MD
Aimee Stotz, DO
Alan Ross, MD
Alex Zaphiris, MD
Alisa Roberts, DO
Alon Gitig, MD
Alvin H. Moss, MD
Andrea Young, DO
Andrew David Shiller, MD
Andrew M. Goldman, DO
Andrew Wakefield, MD
Anette K. S. Mnabhi, DO
Ann M. Sousa, DO
Anna Lups, MD
Anthony Capobianco, DO
Anthony Phan, MD
Arash Jacob, DO
Ashok Patel, MD
Barbara Mitchell, MD
Beth McDougal, MD
Bose Ravenel, MD
Branko Furst, MD
Brian S. Hooker, PhD
Brittany Lyons, DO
Bryon Tarbet, PhD
Carmen Hering, MD
Carol Squyers, MD
Caroline Schier, MD
Carolyn Brooks, MD
Catherine Fehrmann, MD
Cathie Lippman, MD
Chantelle Baldwin, DO
Charles Beck, DO
Charles W. Barnes, MD
Christina Steele, DO
Christopher Brown, DO
Cilla Whatcott, PhD
Larry Malerba, DO
Laura Buehning, MD
Lawrence B Palevsky, MD
Lee Wolfer, MD
Leigh Forbush, DO
Leyna Bautista, MD
Linda Baker, MD
Lindy Woodard, MD
Lisa Pacheco, DO
M. Chad Chamberlain, DO
Magdolna Saringer, MD
Margaret Gennaro, MD
Marianne Herr-Paul, DO
Marianne T. Longacre, MD
Mark Lindstrom, DO
Mary Anne Haskell, DO
Mary L Davenport, MD
Mary Olson, DO
Mary Yee, DO
Melanie Gisler, DO
Melvin Robert Friedman, MD
Meredith L. Lowry, DO
Meredith McBride, MD
Meryl Nass, MD
Michael Carlston, MD
Michael P Burrano, DO
Michael Seffinger, DO
Michael T Breneman, MD
Michael W. Elice, MD
Michelle Veneziano, DO
Mikhail Volokitin, MD, DO
Millicent Channell, DO
Mitchell A. Fleisher, MD
Molly Perkins Hauck, PhD
Myrto Ashe, MD
Nancy L Campbell, MD
Natalie Olmi, PhD
Nevorn Askari, MD
Nicholas DiMartino, DO
Nicholas J. Nossaman, MD
Nicole Pena, DO
Patricia Murray, DO
Paul Capobianco, DO
Paul F. Barratt, MD
Paul Thomas, MD
Pejman Katiraei, DO
Penelope Gay Sheely, MD
Philip D. Ranheim, MD
Philip Incao, MD
Professor Mahin Khatami, PhD
Quentin R. McMullen, MD
Quoc Vo, DO
Rachael L. Ross, MD, PhD
Rachel West, DO
Rajiv L. Yadava, DO
Randy Naidoo, MD
RD Boardman, PhD
Rebecca Malamed, MD
Reem Abu-Sbaih, DO
Ricardo R. Bartelme, MD
Rich Stagliano, MD
Richard C. Deth, PhD
Richard Hiltner, MD
Richard Moskowitz, MD
Robert M. Davidson, MD, PhD
Robert M. Trafeli, DO
Robert Rowen, MD
Ron Kennedy, MD
Ronald D. Rosen, MD
Roy Opsahl, MD
Runa Basu, DO
Russell Carlisle, DO
Sam Eggertsen, MD
Sandy Rerider, MD
Sarah Forsythe, MD
Scott Guidry, MD
Scott Woody, DO
Shanti M. Perkins, MD
Sharon McDonough-Means, MD
Sherri Tenpenny, DO
Stacia Kenet, MD
Stefan Hagopian, DO
Stephanie Collins, DO
Stephanie Daniel, DO
Stephanie Seneff, PhD
Stephen Kisiel, DO
Stephen T. Schultz, PhD
Steven Rayle, MD
Stuart J. Fischbein, MD
Sunil Bhat, DO
Sunja Schweig, MD
Susan McCreadie, MD
Susanne Saltzman, MD
Suzanne Humphries, MD
T. Reid Kavieff, DO
Teresa Su, MD
Tetyana Obukhanych, PhD
Theresa Cyr, DO
Therese Trolan, MD
Thomas Carmine Van Deven, DO
Tiffany Baer, MD
Timothy Dooley, MD
Timothy Kuss, PhD
Timothy T Schultz, DO
Tina Kimmel, PhD
Tommy Redwood, MD
Toni Bark, MD
Travis L. Herring, MD
Tudor Marinescu, MD, PhD
Victoria Chang, DO
Vijaya Pratha, MD
William Cairney, PhD
William Foley, DO
William Kracht, DO
William Reichel, MD
William Thomas Redwood, MD
Woodrow C. Monte, PhD
Yoshi Rahm, DO
Yusuf Erksine, DO

Organizations:
Age of Autism
Alliance for Human Research Protection
Association of American Physicians and Surgeons
Autism Action Network
Autism Is Medical
Children's Medical Safety Research Institute
Focus For Health
Generation Rescue
Health Choice
Health Freedom Action Connecticut
Health Freedom Idaho
Maine Coalition for Vaccine Choice
Mississippi Health Care Professionals for Informed Consent
Moms Across America
National Vaccine Information Center
Oregonians for Medical Freedom
People Advocating Vaccine Education, Inc.
The Canary Party
The Weston A. Price Foundation
The Westreich Foundation
Vermont Coalition for Vaccine Choice
Vermont Coalition for Vaccine Choice/Voices for Choice
Virginia Autism Project
Virginians for Medical Freedom
West Virginians for Health Freedom
Addendum

Immune Activation During Prenatal and Neonatal Development

<table>
<thead>
<tr>
<th>Studies</th>
<th>Quotes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neonatal vaccination with bacillus Calmette–Guérin and hepatitis B vaccines modulates hippocampal synaptic plasticity in rats.
Li et al., J Neuroimmunol, Vol. 288, 2015
PMID: 26531688</td>
<td>“Immune activation can exert multiple effects on synaptic transmission. Our study demonstrates the influence of neonatal vaccination on hippocampal synaptic plasticity in rats under normal physiological conditions. The results revealed that neonatal BCG vaccination enhanced synaptic plasticity. In contrast, HBV hampered it.”
“Our work highlights a critical role of neonatal vaccination in synaptic plasticity...which suggests the necessity of further studies on the association of vaccination with brain development.”</td>
</tr>
<tr>
<td>Maternal immune activation yields offspring displaying mouse versions of the three core symptoms of autism.
Malkova et al., Brain Behav Immun, Vol. 26, 2012
PMID: 22310922</td>
<td>“Maternal immune activation (MIA) yields male offspring with deficient social and communicative behavior, as well as high levels of repetitive behaviors, all of which are hallmarks of autism.”</td>
</tr>
<tr>
<td>Activation of the maternal immune system during pregnancy alters behavioral development of rhesus monkey offspring.
Bauman et al., Biol Psychiatry, Vol. 75, 2014
PMID: 24011823</td>
<td>“In this rhesus monkey model, MIA yields offspring with abnormal repetitive behaviors, communication, and social interactions. These results extended the findings in rodent MIA models to more human-like behaviors resembling those in both autism and schizophrenia.”</td>
</tr>
<tr>
<td>Maternal immune activation in nonhuman primates alters social attention in juvenile offspring.
Machado et al., Biol Psychiatry, Vol. 77, 2015
PMID: 25442006</td>
<td>“The use of noninvasive eye tracking extends the findings from rodent MIA models to more human-like behaviors resembling those in both autism spectrum disorder and schizophrenia.”</td>
</tr>
<tr>
<td>Impaired synaptic development in a maternal immune activation mouse model of neurodevelopmental disorders.
Coiro et al., Brain Behav Immun, Vol. 50, 2015
PMID: 26218293</td>
<td>“Our results suggest that a possible altered inflammatory state associated with maternal immune activation results in impaired synaptic development that persists into adulthood but which can be prevented with early anti-inflammatory treatment.”</td>
</tr>
<tr>
<td>Postnatal systemic inflammation exacerbates impairment of hippocampal synaptic plasticity in an animal seizure model.</td>
<td>“Central nervous system inflammation during critical stages of childhood development could disrupt the balance needed for neurophysiological actions of immune processes, producing direct, pernicious effects on memory, neural plasticity and neurogenesis into adulthood.”</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Chen et al., Neuroimmunomodulation, Vol. 20, 2013</td>
<td></td>
</tr>
<tr>
<td>PMID: 23736043</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maternal immune activation in late gestation increases neuroinflammation and aggravates experimental autoimmune encephalomyelitis in the offspring.</th>
<th>“...maternal immune activation during late gestation predispose the offspring to increased neuroinflammation and potentiate the autoimmune response and clinical manifestation of EAE.”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zager et al., Brain Behav Immun, Vol. 43, 2015</td>
<td>Note: EAE = experimental autoimmune encephalomyelitis</td>
</tr>
<tr>
<td>PMID: 25108214</td>
<td></td>
</tr>
</tbody>
</table>
Aluminum Vaccine Adjuvant and Neurotoxicity/Neuroinflammation

<table>
<thead>
<tr>
<th>Studies</th>
<th>Quotes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-linear dose-response of aluminium hydroxide adjuvant particles: Selective low dose neurotoxicity. Crépeaux et al., Toxicology, Vol. 375, 2017 PMID: 27908630</td>
<td>“Aluminium (Al) oxyhydroxide (Alhydrogel®), the main adjuvant licensed for human and animal vaccines, consists of primary nanoparticles that spontaneously agglomerate. Concerns about its safety emerged following recognition of its unexpectedly long-lasting biopersistence within immune cells in some individuals, and reports of chronic fatigue syndrome, cognitive dysfunction, myalgia, dysautonomia and autoimmune / inflammatory features temporally linked to multiple Al-containing vaccine administrations.”
“Alhydrogel® injected at low dose in mouse muscle may selectively induce long-term Al cerebral accumulation and neurotoxic effects.”</td>
</tr>
<tr>
<td>Slow CCL2-dependent translocation of biopersistent particles from muscle to brain. Khan et al., BMC Med, Vol. 11, 2013 PMID: 23557144</td>
<td>“Intramuscular injection of alum-containing vaccine was associated with the appearance of aluminum deposits in distant organs, such as spleen and brain where they were still detected one year after injection.”
“...alum has high neurotoxic potential, and planning administration of continuously escalating doses of this poorly biodegradable adjuvant in the population should be carefully evaluated by regulatory agencies since the compound may be insidiously unsafe.”</td>
</tr>
<tr>
<td>Administration of aluminium to neonatal mice in vaccine-relevant amounts is associated with adverse long term neurological outcomes. Shaw et al., J Inorg Biochem, Vol. 128, 2013 PMID: 23932735</td>
<td>“Injections of a "high" and "low" Al adjuvant levels were designed to correlate to either the U.S. or Scandinavian paediatric vaccine schedules vs. control saline-injected mice. Both male and female mice in the "high Al" group showed significant weight gains following treatment up to sacrifice at 6 months of age. Male mice in the "high Al" group showed significant changes in light-dark box tests and in various measures of behaviour in an open field. Female mice showed significant changes in the light-dark box at both doses, but no significant changes in open field behaviours. These current data implicate Al injected in early postnatal life in some CNS alterations...”</td>
</tr>
<tr>
<td>Aluminum hydroxide injections lead to motor deficits and motor neuron degeneration. Shaw et al., J Inorg Biochem, Vol. 103, 2009 PMID: 19740540</td>
<td>“Aluminum-treated mice showed significantly increased apoptosis of motor neurons and increases in reactive astrocytes and microglial proliferation within the spinal cord and cortex.”
“Behavioural analyses in these mice revealed significant impairments in a number of motor functions as well as diminished spatial memory capacity.”
“The demonstrated neurotoxicity of aluminum hydroxide and its relative ubiquity as an adjuvant suggest that greater scrutiny by the scientific community is warranted.”</td>
</tr>
</tbody>
</table>
| Aluminum adjuvant linked to Gulf War illness induces motor neuron death in mice. | “Behavioral testing showed motor deficits in the aluminum treatment group.”
“Aluminum-treated groups also showed significant motor neuron loss (35%) and increased numbers of astrocytes (350%) in the lumbar spinal cord.” |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Petrik et al., Neuromolecular Med, Vol. 9, 2007</td>
<td>PMID: 17114826</td>
</tr>
</tbody>
</table>
| Behavioral abnormalities in female mice following administration of aluminum adjuvants and the human papillomavirus (HPV) vaccine Gardasil. | “Vaccine adjuvants and vaccines may induce autoimmune and inflammatory manifestations in susceptible individuals. To date most human vaccine trials utilize aluminum (Al) adjuvants as placebos despite much evidence showing that Al in vaccine-relevant exposures can be toxic to humans and animals.”
“It appears that Gardasil via its Al adjuvant and HPV antigens has the ability to trigger neuroinflammation and autoimmune reactions, further leading to behavioral changes.” |
| Inbar et al., Immunol Res, 2016 [Epub ahead of print] | PMID: 27421722 |

Acetaminophen Exposure during Prenatal and Neonatal Development, or Post-Vaccination

<table>
<thead>
<tr>
<th>Studies</th>
<th>Quotes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetaminophen (paracetamol) use, measles-mumps-rubella vaccination, and autistic disorder: the results of a parent survey.</td>
<td>“This preliminary study found that acetaminophen use after measles-mumps-rubella vaccination was associated with autistic disorder.”</td>
</tr>
<tr>
<td>Shultz et al., Autism, Vol. 12, 2008</td>
<td>PMID: 18445737</td>
</tr>
<tr>
<td>Paracetamol (acetaminophen) administration during neonatal brain development affects cognitive function and alters its analgesic and anxiolytic response in adult male mice.</td>
<td>“...exposure to and presence of paracetamol (acetaminophen) during a critical period of brain development can induce long-lasting effects on cognitive function.”</td>
</tr>
<tr>
<td>Associations between acetaminophen use during pregnancy and ADHD symptoms measured at ages 7 and 11 years.</td>
<td>“These findings strengthen the contention that acetaminophen exposure in pregnancy increases the risk of ADHD-like behaviours.”</td>
</tr>
<tr>
<td>Thompson et al., PLoS One, Vol. 9, 2014</td>
<td>PMID: 25251831</td>
</tr>
</tbody>
</table>
Neurodevelopmental problems at 18 months among children exposed to paracetamol in utero: a propensity score matched cohort study.

Vlenterie et al., Int J Epidemiol, 2016 [Epub ahead of print]

PMID: 27585674

“Previous studies showed that children exposed to paracetamol during fetal life might have an increased risk of neurodevelopmental problems. Since paracetamol is one of the most commonly used medications during pregnancy, even small increases in the risk of neurodevelopmental problems may have considerable implications for public health.”

“Long-term exposure to paracetamol in utero was associated with modestly increased risks of motor milestone delay and impaired communication skills among children at 18 months.”

Note: paracetamol = acetaminophen