

Cambrionix Universal

Charger API

page 2 of 33
Cambrionix API

document revision 0.9

Cambrionix Ltd, St. Johns Innovation Centre, Cowley Road, Cambridge, CB4 0WS

T: +44(0) 1223 755 520

E: enquiries@cambrionix.com

Contents
Contents .. 2

Cambrionix API ... 3

Introduction .. 3

Prerequisites ... 4

Quick start ... 8

Environment ... 9

Description of API calls.. 10

Version .. 11

Discovery ... 12

Connection .. 14

Local or Remote .. 24

U8S and U8S-EXT... 24

Dictionaries ... 25

Socket connections ... 31

Timeouts ... 31

Limitations .. 31

Error codes .. 32

Revision history ... 33

page 3 of 33
Cambrionix API

document revision 0.9

Cambrionix Ltd, St. Johns Innovation Centre, Cowley Road, Cambridge, CB4 0WS

T: +44(0) 1223 755 520

E: enquiries@cambrionix.com

Cambrionix API

Introduction
This is a description of the Cambrionix API that can be used to control Cambrionix Universal charging

units that use the Cambrionix Very Intelligent Charging Protocol.

The Cambrionix API resides in a locally installed daemon called cbrxd. This provides a programming

language independent JSON-RPC interface to control Cambrionix units connected to the local

machine. The Cambrionix API can also connect with Cambrionix units that are connected to the

network eg EtherSync.

There is also a companion daemon, it has different names depending on the OS in use. This

companion daemon’s job is to monitor the system for USB insertion or removal events which are

then notified to cbrxd in order to rescan the USB tree. This is done so that the API will reflect the

changed status information in a timely manner.

A simple Python wrapper is provided with a public domain JSON-RPC library that will allow scripts to

be written without needing to be overly familiar with JSON. Alternatively you may use the

programming language of your choice to connect directly to the daemon over a standard TCP/IP

socket and send and receive JSON formatted data.

When the API is used to communicate with a remote network attached Cambrionix unit this is done

over an ssh tunnel.

The Cambrionix API supports multiple simultaneous client connections to itself and supports

simultaneous access to multiple Cambrionix units.

page 4 of 33
Cambrionix API

document revision 0.9

Cambrionix Ltd, St. Johns Innovation Centre, Cowley Road, Cambridge, CB4 0WS

T: +44(0) 1223 755 520

E: enquiries@cambrionix.com

Prerequisites
Before you can use the Cambrionix API, there are a few steps and checks that need to be completed.

Direct access to USB hardware
For the API to be able to retrieve USB information from connected devices, it must have direct

access to the hardware. This means that in general running in a Virtual Machine (VM) such as

Parallels or VirtualBox is not supported as the virtualisation prevents the API from being able to

determine which USB device is connected to which physical port.

Sync capable charger for USB information
In order for the API to be able to return USB device information such as the Manufacturer or the

serial number, there must be a USB connection from the host machine to the connected device. This

is only present on sync capable chargers. Charge only chargers have a USB connection to the charger

itself but not to connected devices. The Cambrionix API is still functional with charge only chargers

but will be unable to return the USB device information.

Firmware version for universal chargers (U8, U16, PP15, PP8 etc.)
Cambrionix Universal Chargers, when used with this API, need to have firmware version 1.52 or later

installed and we recommend that the latest version available on our website is installed.

FTDI VCP drivers
The Cambrionix API daemon (cbrxd) needs to be able to communicate with the local Cambrionix

unit. Each Cambrionix unit contains an FTDI USB to UART converter that will make them appear to

the local operating system as a serial port. The operating system will need to have the appropriate

VCP (Virtual COM Port) driver installed. For Linux the default support in the kernel is sufficient.

Do not install the D2XX drivers on Linux or macOS as this conflicts with the required VCP drivers. On

Windows only, the D2XX support can coexist with the VCP support.

JSON-RPC library

The API uses JSON-RPC over TCP. Any programming language that has support for JSON-RPC can be

used, libraries are widely available for other language.

Setting up cbrxd
The API is implemented in a daemon process called cbrxd. This needs to be running and contactable

to be able to manage the Cambrionix units. The transport used is TCP with a default TCP port of

43424.

If needed, the listening port can be changed:

 Either by calling cbrxd with the option –port=XXXX where XXXX is an alternate port number

between 1-65535.

 Or, by changing the value in the configuration file

/usr/local/share/cbrxd/config/listeningport

There is also a companion daemon that monitors the system for USB insertion and removal events

and notifies the API to rescan the USB bus. This means that USB information such as VID, PID etc is

available in a timely manner.

page 5 of 33
Cambrionix API

document revision 0.9

Cambrionix Ltd, St. Johns Innovation Centre, Cowley Road, Cambridge, CB4 0WS

T: +44(0) 1223 755 520

E: enquiries@cambrionix.com

OS X installation
For OS X an installer is provided that will set up cbrxd to run as a daemon process.

OS X installation -- setting up the JSON-RPC library
The cbrxd package includes a Python JSON-RPC package in /usr/local/share/cbrxd/python, to install

this go into an appropriate directory where you can unpack the installer and do:

$ mkdir cbrxapi

$ cd cbrxapi

$ tar xvzf /usr/local/share/cbrxd/python/jsonrpc-0.1.tar.gz

$ cd jsonrpc-0.1/

$ sudo python setup.py install

Windows installation
For Windows a self extracting installer is provided that will set up cbrxd to run as a Windows service.

In order to use the example Python code you will also need to install Python eg

https://www.python.org/downloads/

page 6 of 33
Cambrionix API

document revision 0.9

Cambrionix Ltd, St. Johns Innovation Centre, Cowley Road, Cambridge, CB4 0WS

T: +44(0) 1223 755 520

E: enquiries@cambrionix.com

Linux installation
This will vary somewhat per distribution, but as a general guideline:

- The package needs to be unpacked to a suitable location, i.e. /usr/local:

$ cd /usr/local

- In the following command substitute the path/download name and the name of the tar.gz

file:

$ sudo tar xvzf ~/Downloads/cbrxd-0.5.tar.gz

- The main binary cbrxd needs to be able to find the support libraries, don’t separate them

from the main binary.

- Main binary will be located in /usr/local/bin

- Documentation will be located in /usr/local/share/cbrxd/doc

- Examples will be located in /usr/local/share/cbrxd/examples

- Python installer for json-rpc will be located in /usr/local/share/cbrxd/python

- Setup scripts will be located in /usr/local/share/cbrxd/setup

Please use these setup scripts, or the information in them, in order to install the two

daemons, cbrxd and cbrxudevmonitor. cbrxd is delivered as a binary but cbrxudevmonitor is

delivered as source code that needs to be compiled into a binary. cbrxudevmonitor is an

optional component, the API will be functional without it.

- Dependencies, may be different depending on your Linux distribution, the below are for

Ubuntu 14.04

libc6:i386

libglib2.0-0:i386

libicu52:i386

libncurses5:i386

libstdc++6:i386

libudev1

gcc

Linux installation -- setting up the JSON-RPC library
The cbrxd package includes a Python JSON-RPC package in /usr/local/share/cbrxd/python, to install

this go into an appropriate directory where you can unpack the installer and do:

$ mkdir cbrxapi

$ cd cbrxapi

$ tar xvzf /usr/local/share/cbrxd/python/jsonrpc-0.1.tar.gz

$ cd jsonrpc-0.1/

$ sudo python setup.py install

page 7 of 33
Cambrionix API

document revision 0.9

Cambrionix Ltd, St. Johns Innovation Centre, Cowley Road, Cambridge, CB4 0WS

T: +44(0) 1223 755 520

E: enquiries@cambrionix.com

Linux installation -- setting up cbrxd to start up automatically
Two example startup scripts are included in /usr/local/share/cbrxd/setup, choose the one

appropriate for your configuration:

SysV init

The file needed is cbrxd.sh

Inspect the contents and verify that this does what you need for your local installation.

To install it:
% sudo cp /usr/local/share/cbrxd/setup/cbrxd.sh /etc/init.d

% sudo update-rc.d cbrxd.sh default

systemd

The file needed is cbrxd.service

Inspect the contents and verify that this does what you need for your local installation.

To install it:
% sudo cp /usr/local/share/cbrxd/setup/cbrxd.service /etc/systemd/system

% sudo systemctl enable cbrxd

% sudo systemctl start cbrxd

Command line options for cbrxd
-–version: Return the version of cbrxd and then exit:

Example:
% cbrxd -–version

version 0.5.0 build 23

-–port=XXXXX: Run cbrxd with an alternate TCP listening port. Specifying the command line

option overrides both the default value of 43424 or any value configured in

/usr/local/share/cbrxd/config/listening port.

Example:

% cbrxd –-port=54321

Return codes for cbrxd
The following values will be returned on exit cbrxd:

0 on successful exit

(i.e. on doing cbrxd –version)

1 on unsuccessful exit

(i.e. on cbrxd being passed an invalid port number or failed to open the listening port)

Logging
Log messages generated by cbrxd go to syslog.

page 8 of 33
Cambrionix API

document revision 0.9

Cambrionix Ltd, St. Johns Innovation Centre, Cowley Road, Cambridge, CB4 0WS

T: +44(0) 1223 755 520

E: enquiries@cambrionix.com

Quick start
Some example scripts are included in /usr/local/share/cbrxd/examples.

Minimal example
Here is a minimal example of using the API, the code is written in Python 2.7.8:

1 import sys

from cbrxapi import cbrxapi

2 result = cbrxapi.cbrx_discover("local")

if result==False:

 print "No Cambrionix unit found."

 sys.exit(0)

unitId = result[0]

3 handle = cbrxapi.cbrx_connection_open(unitId)

4 nrOfPorts = cbrxapi.cbrx_connection_get(handle, "nrOfPorts")

5 cbrxapi.cbrx_connection_close(handle)

6 print "The Cambrionix unit " + unitId + " has " + str(nrOfPorts) + "

ports."

A brief explanation:

1. Import the cbrxapi library.

2. Call cbrx_discover with “local” to find any locally attached Cambrionix units. This will return

a list of local Cambrionix units. This example always uses the first Cambrionix unit returned.

3. Open a connection to the Cambrionix unit, which will return a handle for the connection.

4. Using the handle, get the property “nrOfPorts” from the Cambrionix unit.

5. Done using the Cambrionix unit, close the handle.

6. Finally, print out the information retrieved from the Cambrionix unit.

Error handling
Note that the code above doesn’t check for errors so the Python script will stop on any failure. This

should be made more robust by catching any exceptions and dealing with them appropriately.

A JSON-RPC error will return an error member containing the following members:

- code (mandatory) – an integer indicating

either a pre-defined JSON-RPC error code in the range -32768 to -32000

or a CBRXAPI error code as documented in the section”CBRXAPI specific errors” section.

- message (optional) – a message string explaining the error code

- data (optional) – extra information about the error like debug messages or handles.

The Python JSON-RPC used causes an exception for an error response with the following mapping:

member code is returned in e.error_code

member message is returned in e.error_message

member data is returned in e.error_data.

In step 3 you could catch an error response with:

page 9 of 33
Cambrionix API

document revision 0.9

Cambrionix Ltd, St. Johns Innovation Centre, Cowley Road, Cambridge, CB4 0WS

T: +44(0) 1223 755 520

E: enquiries@cambrionix.com

3 try:

 handle = cbrxapi.cbrx_connection_open(id)

except jsonrpc.RPCFault as e:

 gotException = True

 errorCode = e.error_code

 errorMessage = e.error_message

 errorData = e.error_data

Depending on the errorCode returned different actions can be taken, i.e. the user could be

prompted to check whether the device is plugged in before retrying or asked to verify that cbrxd is

installed.

Environment

The Cambrionix API is implemented in cbrxd, which sits between the application and the Cambrionix

units. It maps the properties of the Cambrionix units into API commands.

For example:

- to disable a USB port you can do
cbrx_connection_set (connectionHandle, “Port.2.mode”, “o”)

- to reset a Cambrionix unit you can do
cbrx_connection_set (connectionHandle, “Reboot”, True)

- to get the number of USB ports of a Cambrionix unit you can do a “get nrOfPorts”

request,
cbrx_connection_get(connectionHandle, “nrOfPorts”)

Application

or script

cbrxd

Cambrionix

Unit 1

Cambrionix

Unit 2

Cambrionix

Unit n

…

page 10 of 33
Cambrionix API

document revision 0.9

Cambrionix Ltd, St. Johns Innovation Centre, Cowley Road, Cambridge, CB4 0WS

T: +44(0) 1223 755 520

E: enquiries@cambrionix.com

Description of API calls
The descriptions of the API calls contain a sample Python call and the raw jsonrpc requests /

responses as you would see them on the wire.

JSON-RPC requests
The JSON-RPC implementation should hide these details.

The Python request cbrxapi.cbrx_connection_get(7654, “nrOfPorts”)

translates into a JSONRPC request containing the method name:

“method”: “cbrx_connection_get”,

and a JSON representation of the parameters, which is a JSON array of values:

“params”: [7654, “nrOfPorts”]

Two further key-value pairs need to be passed to complete the JSON-request;

One indicating the version of jsonrpc being used, in this case 2.0:

“jsonrpc”: “2.0”

and an id identifying this request:

“id”: 0

The id is mandatory but only relevant if multiple requests can be outstanding simultaneously over

the same connection. It helps to match responses to (asynchronous) requests. The response for a

request will be given the matching id by cbrxd.

Grouping this all together will give the complete JSON-RPC request:

{ "jsonrpc": "2.0",

"method": "cbrx_connection_get",

"params": [7654,

 "nrOfPorts"],

"id": 0

}

There are 3 groups of calls in the API:

- Version

- Discovery

- Connection

page 11 of 33
Cambrionix API

document revision 0.9

Cambrionix Ltd, St. Johns Innovation Centre, Cowley Road, Cambridge, CB4 0WS

T: +44(0) 1223 755 520

E: enquiries@cambrionix.com

Version

cbrx_apiversion
Return the interface version of the local API running.

Input: none

Returns:

On success:

Retuns a pair of integers (major, minor) indicating the API version.

The current version is major 1, minor 2.

On failure: a JSON-error object will be returned.

Example Python call:

cbrxapi.cbrx_apiversion()

Example JSONRPC request:

{ "jsonrpc": "2.0",

"method": "cbrx_apiversion",

"id": 0

}

Example successful response:

{ "jsonrpc":"2.0",

"id":0,

"result":[1,2]

}

page 12 of 33
Cambrionix API

document revision 0.9

Cambrionix Ltd, St. Johns Innovation Centre, Cowley Road, Cambridge, CB4 0WS

T: +44(0) 1223 755 520

E: enquiries@cambrionix.com

Discovery

cbrx_discover
Discover Cambrionix units.

Input: “local” for Cambrionix units attached to the local machine

 “remote” for Cambrionix network attached units eg EtherSync

Returns:

On success: the unit IDs for the discovered Cambrionix units will be returned as an array of

strings. Each unit ID is guaranteed to be unique. The unit ID is based on the serial number of

the Cambrionix unit.

On failure: a JSON-error object will be returned.

Example Python call:

cbrxapi.cbrx_discover("local")

Example JSONRPC request:

{ "jsonrpc": "2.0",

"method": "cbrx_discover",

"params": ["local"],

"id": 0

}

Example successful response:

{ "jsonrpc":"2.0",

"id":0,

"result":["DB0074F5"]

}

Example unsuccessful response:

{ "jsonrpc":"2.0",

"id":0,

"error":

{ "code":-32602,

 "message": "Invalid params"

}

}

page 13 of 33
Cambrionix API

document revision 0.9

Cambrionix Ltd, St. Johns Innovation Centre, Cowley Road, Cambridge, CB4 0WS

T: +44(0) 1223 755 520

E: enquiries@cambrionix.com

cbrx_discover_id_to_os_reference
Map a unit ID for a discovered Cambrionix unit to a device name as used by the OS.

Input: a unit ID as returned by cbrx_discover

Returns:

On success: the device name as used by the OS for the connection that the Cambrionix unit

identified by the unit ID is connected to

On failure: a JSON-error object will be returned.

Note:

 This only makes sense for locally attached Cambrionix units.

Example Python call:

cbrxapi.cbrx_discover_id_to_os_reference(unitId)

Example JSONRPC request:

{ "jsonrpc": "2.0",

"method": "cbrx_discover_id_to_os_reference",

"params": ["DB0074F5"],

"id": 0

}

Example successful response:

{ "jsonrpc":"2.0",

"id":0,

"result":["/dev/ttyUSB0"]

}

Example unsuccessful response:

{ "jsonrpc":"2.0",

"id":0,

"error":

{ "code":-32602,

 "message": "Invalid params"

}

}

page 14 of 33
Cambrionix API

document revision 0.9

Cambrionix Ltd, St. Johns Innovation Centre, Cowley Road, Cambridge, CB4 0WS

T: +44(0) 1223 755 520

E: enquiries@cambrionix.com

Connection

cbrx_connection_remote_set_password
Set a password for a remote device to be used when opening a connection to that remote device.

For a remote unit this call must be made before cbrx_connection_open in order to provide the

password needed for the ssh connection.

Input parameter:

1. a unit ID as returned by a previous call to cbrx_discover

2. password for the remote unit

Returns:

On success: the boolean value true will be returned

On failure: a JSON-error object will be returned.

Example Python call:

result =

cbrxapi.cbrx_connection_remote_set_password("EtherSyncxxyyzz.local.",

"passW0rd")

Example JSONRPC request:

{ "jsonrpc": "2.0",

"method": " cbrx_connection_remote_set_password",

"params": ["EtherSyncxxyyzz.local.", "passW0rd"],

"id": 0

}

Example successful response:

{ "jsonrpc":"2.0",

"id":0,

"result":true

}

Example unsuccessful response:

{ "jsonrpc":"2.0",

"id":0,

"error":

{ "code":-10001,

 "message": "ID not found"

}

}

page 15 of 33
Cambrionix API

document revision 0.9

Cambrionix Ltd, St. Johns Innovation Centre, Cowley Road, Cambridge, CB4 0WS

T: +44(0) 1223 755 520

E: enquiries@cambrionix.com

cbrx_connection_open
Open a connection to the Cambrionix unit specified.

A succesful open results in a connection handle that can be used for further calls, which needs to be

closed with a call to cbrx_connection_close.

An unsuccessful open does not need a corresponding call to cbrx_connection_close.

Input parameter:

 1. a unit ID as returned by a previous call to cbrx_discover

 2. for a local connection you may optionally supply a second parameter “local”, for a remote

connection you MUST supply a second parameter “remote”, if the second parameter is not present

then “local” will be assumed

Returns:

On success: a connection handle will be returned as an integer

On failure: a JSON-error object will be returned.

Example Python call:

connectionHandle = cbrxapi.cbrx_connection_open("DB0074F5","local")

Example JSONRPC request:

{ "jsonrpc": "2.0",

"method": "cbrx_connection_open",

"params": ["DB0074F5"],

"id": 0

}

Example successful response:

{ "jsonrpc":"2.0",

"id":0,

"result":7654

}

Example unsuccessful response:

{ "jsonrpc":"2.0",

"id":0,

"error":

{ "code":-10001,

 "message": "ID not found"

}

}

page 16 of 33
Cambrionix API

document revision 0.9

Cambrionix Ltd, St. Johns Innovation Centre, Cowley Road, Cambridge, CB4 0WS

T: +44(0) 1223 755 520

E: enquiries@cambrionix.com

cbrx_connection_close
Close a connection to a Cambrionix unit previously opened, as specified by the connection handle.

Input parameter:

 a connection handle as returned by a previous call to cbrx_connection_open

Returns:

On success: the boolean value true will be returned

On failure: a JSON-error object will be returned.

Note:

It is important to receive the response before closing the socket to ensure the operation has

time to be actioned.

Example Python call:

result = cbrxapi.cbrx_connection_close(connectionHandle)

Example JSONRPC request:

{ "jsonrpc": "2.0",

"method": "cbrx_connection_close",

"params": [7654],

"id": 0

}

Example successful response:

{ "jsonrpc":"2.0",

"id":0,

"result":true

}

Example unsuccessful response:

{ "jsonrpc":"2.0",

"id":0,

"error":

{ "code":-10005,

 "message": "Invalid handle"

}

}

page 17 of 33
Cambrionix API

document revision 0.9

Cambrionix Ltd, St. Johns Innovation Centre, Cowley Road, Cambridge, CB4 0WS

T: +44(0) 1223 755 520

E: enquiries@cambrionix.com

cbrx_connection_remote_apiversion
Return the API version from a remote connection that has previously been opened.

Input parameter:

 a connection handle as returned by a previous call to cbrx_connection_open

Returns:

On success:

Retuns a pair of integers (major, minor) indicating the remote API version.

The current version is major 1, minor 2.

On failure: a JSON-error object will be returned.

Example Python call:

cbrxapi.cbrx_connection_remote_apiversion(connectionHandle)

Example JSONRPC request:

{ "jsonrpc": "2.0",

"method": "cbrx_conection_remote_apiversion",

"params": [7654],

"id": 0

}

Example successful response:

{ "jsonrpc":"2.0",

"id":0,

"result":[1,2]

}

page 18 of 33
Cambrionix API

document revision 0.9

Cambrionix Ltd, St. Johns Innovation Centre, Cowley Road, Cambridge, CB4 0WS

T: +44(0) 1223 755 520

E: enquiries@cambrionix.com

cbrx_connection_getdictionary
List all tags that can return information on the Cambrionix unit specified by connectionHandle.

Input parameter:

 a connection handle as returned by a previous call to cbrx_connection_open

Returns:

On success: an array of strings containing the names of the readable tags for the Cambrionix

unit

On failure: a JSON-error object will be returned.

Example Python call:

cbrxapi.cbrx_connection_getdictionary(connectionHandle)

Example JSONRPC request:

{ "jsonrpc": "2.0",

"method": "cbrx_connection_getdictionary",

"params": [7654],

"id": 0

}

Example successful response:

{ "jsonrpc":"2.0",

"id":0,

"result":["SystemTitle",

 "Hardware",

 "Firmware",

 ...

]

}

Example unsuccessful response:

{ "jsonrpc":"2.0",

"id":0,

"error":

{ "code":-10005,

 "message": "Invalid handle"

}

}

page 19 of 33
Cambrionix API

document revision 0.9

Cambrionix Ltd, St. Johns Innovation Centre, Cowley Road, Cambridge, CB4 0WS

T: +44(0) 1223 755 520

E: enquiries@cambrionix.com

cbrx_connection_get
From the Cambrionix unit specified by the connection handle, get the value of the tag

Input parameters:

 1. connectionHandle as returned by a previous call to cbrx_connection_open

 2. tag as returned by a call to cbrx_connection_getdictionary

Returns:

On success: the value of the tag specified

On failure: a JSON-error object will be returned.

Example Python call:

value = cbrxapi.cbrx_connection_get(connectionHandle, "nrOfPorts")

Example JSONRPC request:

{ "jsonrpc": "2.0",

"method": "cbrx_connection_get",

"params": [7654,

 "nrOfPorts"],

"id": 0

}

Example successful response:

{ "jsonrpc":"2.0",

"id":0,

"result":8

}

Example unsuccessful response:

{ "jsonrpc":"2.0",

"id":0,

"error":

{ "code":-10003,

 "message": "Key not found"

}

}

page 20 of 33
Cambrionix API

document revision 0.9

Cambrionix Ltd, St. Johns Innovation Centre, Cowley Road, Cambridge, CB4 0WS

T: +44(0) 1223 755 520

E: enquiries@cambrionix.com

cbrx_connection_setdictionary
List all writable value tags and command tags for the Cambrionix unit specified by

connectionHandle.

Input parameter:

 a connection handle as returned by a previous call to cbrx_connection_open

Returns:

On success: an array of strings containing the names of the writable tags and command tags

for the device

On failure: a JSON-error object will be returned.

Example Python call:

cbrxapi.cbrx_connection_setdictionary(connectionHandle)

Example JSONRPC request:

{ "jsonrpc": "2.0",

"method": "cbrx_connection_setdictionary",

"params": [7654],

"id": 0

}

Example successful response:

{ "jsonrpc":"2.0",

"id":0,

"result":["Port.1.mode",

 "Port.2.mode",

 ...

 "ClearRebootFlag ",

 "Reboot",

 ...

]

}

Example unsuccessful response:

{ "jsonrpc":"2.0",

"id":0,

"error":

{ "code":-10005,

 "message": "Invalid handle"

}

}

page 21 of 33
Cambrionix API

document revision 0.9

Cambrionix Ltd, St. Johns Innovation Centre, Cowley Road, Cambridge, CB4 0WS

T: +44(0) 1223 755 520

E: enquiries@cambrionix.com

cbrx_connection_set
On the Cambrionix unit specified by the connection handle, set the tag to the value specified.

Input parameters:

 1. connectionHandle as returned by a previous call to cbrx_connection_open

 2. tag as returned by a call to cbrx_connection_setdictionary

 3. value, the value to set the tag to.

Returns:

On success: the Boolean value true

On failure: a JSON-error object will be returned.

Note:

It is important to receive the response before closing the socket to ensure the operation has

time to be actioned.

Example Python call:

cbrxapi.cbrx_connection_setdictionary(connectionHandle, "Reboot",

True)

Example JSONRPC request:

{ "jsonrpc": "2.0",

"method": "cbrx_connection_set",

"params": [7654,

 "TwelveVoltRail.OverVoltage",

 true

],

"id": 0

}

Example successful response:

{ "jsonrpc":"2.0",

"id":0,

"result":true

}

Example unsuccessful response:

{ "jsonrpc":"2.0",

"id":0,

"error":

{ "code":-10004,

 "message": "Error setting value"

}

}

page 22 of 33
Cambrionix API

document revision 0.9

Cambrionix Ltd, St. Johns Innovation Centre, Cowley Road, Cambridge, CB4 0WS

T: +44(0) 1223 755 520

E: enquiries@cambrionix.com

cbrx_connection_closeandlock
Forcibly close all connections to a Cambrionix unit and lock it against further use until released by

cbrx_connection_unlock. Other processes that were using these connections will get errors returned

if trying to access this Cambrionix unit.

Locking a Cambrionix unit that wasn’t previously opened does no harm and will succeed.

Input parameter:

 a unit ID as returned by a previous call to discover

Returns:

On success: the boolean value true will be returned

On failure: a JSON-error object will be returned.

Note:

It is important to receive the response before closing the socket to ensure the operation has

time to be actioned.

Example Python call:

cbrxapi.cbrx_connection_closeandlock("DB0074F5")

Example JSONRPC request:

{ "jsonrpc": "2.0",

"method": "cbrx_connection_closeandlock",

"params": ["DB0074F5"],

"id": 0

}

Example successful response:

{ "jsonrpc":"2.0",

"id":0,

"result":true

}

Example unsuccessful response:

{ "jsonrpc":"2.0",

"id":0,

"error":

{ "code":-10001,

 "message": "ID not found"

}

}

page 23 of 33
Cambrionix API

document revision 0.9

Cambrionix Ltd, St. Johns Innovation Centre, Cowley Road, Cambridge, CB4 0WS

T: +44(0) 1223 755 520

E: enquiries@cambrionix.com

cbrx_connection_unlock
Unlock a Cambrionix unit that was previously locked.

Unlocking a Cambrionix unit that wasn’t previously locked does no harm and will succeed.

Input parameter:

 a unit ID as returned by a previous call to discover

Returns:

On success: the boolean value true will be returned

On failure: a JSON-error object will be returned.

Note:

It is important to receive the response before closing the socket to ensure the operation has

time to be actioned.

Example Python call:

cbrxapi.cbrx_connection_unlock("DB0074F5")

Example JSONRPC request

{ "jsonrpc": "2.0",

"method": "cbrx_connection_unlock",

"params": ["DB0074F5"],

"id": 0

}

Example successful response:

{ "jsonrpc":"2.0",

"id":0,

"result":true

}

Example unsuccessful response:

{ "jsonrpc":"2.0",

"id":0,

"error":

{ "code":-10001,

 "message": "ID not found"

}

}

page 24 of 33
Cambrionix API

document revision 0.9

Cambrionix Ltd, St. Johns Innovation Centre, Cowley Road, Cambridge, CB4 0WS

T: +44(0) 1223 755 520

E: enquiries@cambrionix.com

Local or Remote
Local and remote Cambrionix units need to be treated slightly differently due to the way they are

accessed.

A ‘local’ Cambrionix unit is one that is connected with a USB cable to the machine which is running

the API. If you do not specify the location to cbrx_discover or cbrx_connection_open then the API

will assume that you are using a local Cambrionix unit.

A ‘remote’ Cambrionix unit is not connected to the machine which is running the API but is instead

connected to a network that is accessible from the machine which is running the API. Currently the

only Cambrionix unit which connects over a network is EtherSync.

In order to connect to a remote Cambrionix unit you must discover it first by passing ‘remote’ as the

location parameter to cbrx_discover. Once you have the device ID of a remote Cambrionix unit, you

then need to provide its password using cbrx_connection_remote_set_password. When the

password has been set, you can then call the cbrx_connection_open specifying the device ID of the

remote unit as well as ‘remote’ for the location. Once the connection is open the handle is sufficient

for the API to distinguish local or remote and so other calls do not need to specify the location.

There is also an additional call cbrx_connection_remote_apiversion which will return the API version

of the remote charger.

U8S and U8S-EXT
The U8S and U8S-EXT chargers have a small difference from other Cambrionix Universal Chargers in

that their control or update port has an external connection. All other Cambrionix Universal Chargers

have a single host connection that combines the functions of the upstream connection to the host

with the control or update port.

In order for the U8S or U8S-EXT to work correctly with the API there must be a USB cable that

connects the control or update port to an expansion port on the same board. This is in addition to

the USB cable that connects the host port to the machine running the API.

page 25 of 33
Cambrionix API

document revision 0.9

Cambrionix Ltd, St. Johns Innovation Centre, Cowley Road, Cambridge, CB4 0WS

T: +44(0) 1223 755 520

E: enquiries@cambrionix.com

Dictionaries
For each Cambrionix unit, cbrxd can return two dictionaries:

- the “Get dictionary”, containing keys for the tags that can be read

- the “Set dictionary”, containing keys for the tags that can be written to or can perform an action

The keys returned depend on the feature set(s) supported by the unit.

Feature sets

The following feature sets are available:

Feature set Description

base base level functionality supported by all Cambrionix units

sync syncing capability

12v the unit has a 12v power supply

temp the unit has a temperature sensor

All Cambrionix units support the “base” feature set.

The range of possible values for a tag in the “base” feature set can be extended if an additional

feature set is also available. For example, “Port.n.flags” can only return a flag “S” (port is in sync

mode) on a device that also implements the sync feature set

The “Hardware” key returns a value for the type of Cambrionix unit.

These are the extra feature sets cbrxd supports for the various types of Cambrionix unit:

Cambrionix unit type
returned by “Hardware”

sync 12v temp

PP8C - + +

PP8S + + +

PP15C - + +

PP15S + + +

Series8 - - -

U8C-EXT - + +

U8C - - -

U8RA + - -

U8S-EXT + + +

U8S + - -

U10C - - -

U10S + - -

U12S + - -

U16S-NL + - -

page 26 of 33
Cambrionix API

document revision 0.9

Cambrionix Ltd, St. Johns Innovation Centre, Cowley Road, Cambridge, CB4 0WS

T: +44(0) 1223 755 520

E: enquiries@cambrionix.com

Get Dictionary
Key Feature

set
Description Example

value
SystemTitle base The system identification text cambrionix

U8S-EXT 8 Port

USB

Charge+Sync

Hardware base Type of the Cambrionix unit U8S-EXT

Firmware base Firmware version string 1.55

Compiled base Timestamp of firmware version Jul 08 2015

10:43:20

Group base Group letter read from PCB jumpers,

or “–“ if no group jumper was fitted

-

PanelID base PanelID number of front panel board, if fitted,

or “Absent”/”None”

Absent

Port.n.VID sync Vendor ID of the USB device attached to this

USB port, if it could be detected.

0 (zero) is returned if it could not be detected

0

Port.n.PID sync Product ID of the USB device attached to this

USB port, if it could be detected

0 (zero) is returned if it could not be detected

0

Port.n.Manufacturer sync Manufacturer as reported by the USB device

attached to this USB port, if it could be

detected.

Empty string is returned if it could not be

detected.

“”

Port.n.Description sync Description as reported by the USB device

attached to this USB port, if it could be

detected.

Empty string is returned if it could not be

detected.

“”

Port.n.SerialNumber sync Serial number as reported by the USB device

attached to this USB port, if it could be

detected

Empty string is returned if it could not be

detected.

“”

Port.n.USBStrings base A dictionary containing the values for

‘Manufacturer’, ‘Description’ and

‘SerialNumber’ for this USB port

{‘SerialNumber’:

‘’, ‘Description’:

‘’,

‘Manufacturer’:

‘’}

Port.n.Current_mA base Current being delivered to the USB device

connected to this USB port in milli-Amperes

(mA)

0

Port.n.Flags base

Port flags separated by spaces.

O S B I P C F are mutually exclusive

O = USB port Off

S = USB port in Sync mode (can only be

returned on devices that implement the sync

feature set)

B = USB port in Biased mode

I = USB port in charge mode and Idle

P = USB port in charge mode and Profiling

 R D S

page 27 of 33
Cambrionix API

document revision 0.9

Cambrionix Ltd, St. Johns Innovation Centre, Cowley Road, Cambridge, CB4 0WS

T: +44(0) 1223 755 520

E: enquiries@cambrionix.com

C = USB port in charge mode and Charging

F = USB port in charge mode and has Finished

charging

A D are mutually exclusive

A = a USB device is Attached to this USB port

D = Detached, no USB device is attached

E = Errors are present

R = system has been Rebooted

r = Vbus is being reset during mode change

Port.n.ProfileID base Profile ID number, or 0 if not charging 0

Port.n.TimeCharging_sec base Time in seconds since this USB port started

charging an attached device

0 will be returned if the USB port has not

started charging an attached device

0

Port.n.TimeCharged_sec base Time in seconds since this USB port detected

the device has completed charging

-1 will be returned if this port has not

detected completed charging

-1

Port.n.Energy_Wh base Energy the USB device on this USB port has

consumed in Watthours (calculated every

second)

0.0

Attached base A bitfield with one bit set for each port with a

device attached, port 1 in bit 0, port 2 in bit 1

and so on

0

nrOfPorts base Number of USB ports on the Cambrionix unit 8

TotalCurrent_mA base Total current in mA for all USB ports 0

Uptime_sec base Time in seconds the Cambrionix unit has been

running since the last reset

151304

FiveVoltRail_V base Current 5V supply voltage in Volt (V) 5.25

TotalPower_W base Total power being consumed on all USB ports

in Watts (W)

0.0

FiveVoltRailMin_V base Lowest 5V supply voltage seen in Volt (V) 5.2

FiveVoltRailMax_V base Highest 5V supply voltage seen in Volt (V) 5.25

FiveVoltRail_flags base List of 5V supply rail error flags:

UV – undervoltage occurred

OV – overvoltage occurred

no flags – voltage is acceptable

TwelveVoltRail_V 12v Current 12V supply voltage in Volt (V) 12.43

TwelveVoltRailMin_V 12v Lowest 12V supply voltage seen in Volt (V) 12.31

TwelveVoltRailMax_V 12v Highest 12V supply voltage seen 12.52

TwelveVoltRail_flags 12v List of 12V supply rail error flags:

UV – undervoltage occurred

OV – overvoltage occurred

no flags – voltage is acceptable

Temperature_C temp Present PCB temperature in degrees Celsius

measured temperatures ≤ 0 °C will return 0

measured temperatures ≥100 °C will return

100

37.7

TemperatureMax_C temp Highest PCB temperature in degrees Celsius 39.9

page 28 of 33
Cambrionix API

document revision 0.9

Cambrionix Ltd, St. Johns Innovation Centre, Cowley Road, Cambridge, CB4 0WS

T: +44(0) 1223 755 520

E: enquiries@cambrionix.com

measured temperatures ≤ 0 °C will return 0

measured temperatures ≥ 100 °C will return

100

Temperature_flags temp Temperature error flags:

OT – overtemperature event has occurred

no flags – temperature is acceptable

pwm_percent temp Fan speed 0

rebooted base A flag indicating if the system has been

rebooted since power up

True – system has been rebooted

False – no reboot has occurred

true

HostPresent sync Host is connected to the Cambrionix unit true

ModeChangeAuto sync Mode change from Charge to Sync is

automatic

true

FiveVoltRail_Limit_Min_V base Lower limit of the 5V rail that will trigger the

error flag

3.5

FiveVoltRail_Limit_Max_V base Upper limit of the 5V rail that will trigger the

error flag

5.58

TwelveVoltRail_Limit_Min_V 12v Lower limit of the 12V rail that will trigger the

error flag

9.59

TwelveVoltRail_Limit_Max_V 12v Upper limit of the 12V rail that will trigger the

error flag

14.5

Temperature_Limit_Max_C temp Upper limit of the acceptable temperature

range that will trigger the error flag

65.0

Profile.n.enabled base Is global profile n enabled? false

SecurityArmed base Is security armed? true / false

Key.<n> base 0 if button n has not been pressed since the last
time this entry was read
1 if button n has been pressed since the last time
this entry was read
Double-clicks cannot be detected.

0 / 1

page 29 of 33
Cambrionix API

document revision 0.9

Cambrionix Ltd, St. Johns Innovation Centre, Cowley Road, Cambridge, CB4 0WS

T: +44(0) 1223 755 520

E: enquiries@cambrionix.com

Set Dictionary
Key Feature set Description Possible values
Mode base Set all USB Ports mode to c -- charge mode

s – sync mode
b – biased
o – off

Sync mode can only
be set on device that
implement the
“sync” feature set.

Port.n.mode base Set USB port N mode to c -- charge mode
s – sync mode
b – biased
o – off

Port.n.led1 base Set the status of the first LED 0-255 with the LEDs
flashing according to
the bit pattern
represented by the
value

Port.n.led2 base Set the status of the second LED 0-255 with the LEDs
flashing according to
the bit pattern
represented by the
value

Port.n.led3 base Set the status of the third LED 0-255 with the LEDs
flashing according to
the bit pattern
represented by the
value

Port.n.leds base Set the status of all three LEDs A 24 bit value
consisting of the
individual LED
settings as 8 bit
values shifted and
or’ed together ie
led1 | (led2 << 8) |
(led3 << 16)

ClearLCD base Clear the LCD true

LCDText.<row>.<column> base Write the string on the LCD at (row,
column). Row and column are zero based.

String

RemoteControl base Enabled / disable controlling of the unit
controls. This will allow the LEDs or LCD to
be updated or panel button pushes to be
detected.

true / false

SecurityArmed base Enable / disable security feature.
If the security is enabled, removal of a
device from a port will sound an alarm and
flash lights.

true / false

Beep base Beep for the number of milliseconds
passed in

Integer

ClearRebootFlag base Clear the reboot flag true

ClearErrorFlags base Clear all error flags true

Reboot base Reboot the system now true

FiveVoltRail.OverVoltage base Force the behaviour of a 5V overvoltage
condition

true

page 30 of 33
Cambrionix API

document revision 0.9

Cambrionix Ltd, St. Johns Innovation Centre, Cowley Road, Cambridge, CB4 0WS

T: +44(0) 1223 755 520

E: enquiries@cambrionix.com

FiveVoltRail.UnderVoltage base Force the behaviour of a 5V undervoltage
condition

true

TwelveVoltRail.OverVoltage 12v Force the behaviour of a 12V overvoltage
condition

true

TwelveVoltRail.UnderVoltage 12v Force the behaviour of a 12V undervoltage
condition

true

Temperature.OverTemperature temp Force the behaviour of an
overtemperature condition

true

page 31 of 33
Cambrionix API

document revision 0.9

Cambrionix Ltd, St. Johns Innovation Centre, Cowley Road, Cambridge, CB4 0WS

T: +44(0) 1223 755 520

E: enquiries@cambrionix.com

Socket connections
When using the Python wrapper that provides the cbrxapi module, each time a call is made to the

API, a socket is created. This socket is then used to send the command and receive the response

before being closed.

If you are writing your own program, in whichever language you choose, you may wish to consider

creating a single socket at the start of your communication with the API and keeping this socket

open until you wish to stop using the API. Keeping the socket open for the lifetime of your

communication with the API will reduce the load on the system and lead to shorter communication

cycles with the API.

If you do choose to manage your own socket connections to the API, either as a long lived singleton,

or else created on a per use basis, it is important that you do not close the socket before receiving

the response from the final command. Closing the socket without waiting to receive the response

may lead to the requested operation not being completed, this is especially important on set and

close operations.

The API will only accept connections from the local machine.

Timeouts
If there is no activity on an open handle for more than 120s, the handle will be deleted. Subsequent

calls attempting to use a deleted handle will fail with CBRXAPI_ERRORCODE_INVALIDHANDLE.

Software using the API must be able to cope with this situation and respond accordingly. Software

may simply call cbrx_connection_open again in order to obtain a fresh handle.

Limitations
The API provides a means of controlling most of the features of Cambrionix Universal devices,

however there are some limitations.

The API does not currently support:

- automatic logging

- changing profiles

- updating of device firmware

page 32 of 33
Cambrionix API

document revision 0.9

Cambrionix Ltd, St. Johns Innovation Centre, Cowley Road, Cambridge, CB4 0WS

T: +44(0) 1223 755 520

E: enquiries@cambrionix.com

Error codes

CBRXAPI specific errors

CBRXAPI_ERRORCODE_DROPPED = -10007
Socket connection to remote has been dropped.

The socket connection to a remote Cambrionix unit has been dropped. To continue communication,

a socket must be re-established by calling cbrx_connection_open again.

CBRXAPI _ERRORCODE_TIMEOUT = -10006
Timeout on communication.

An operation towards a Cambrionix unit took too long to complete. It may have been disconnected

or just slow to respond. It is worth retrying the operation.

CBRXAPI _ERRORCODE_INVALIDHANDLE = -10005
Invalid handle.

The handle passed in to a function is not valid or no longer valid. This could happen either by passing

in an incorrect value or if the handle has already been closed (i.e. by cbrxd_closeandlock being

called), or the unit has been disconnected from the computer.

CBRXAPI _ERRORCODE_ERRORSETTINGVALUE = -10004
Could not set value.

The (key, value) pair was not acceptable. This could mean the tag does not exist or is misspelled, the

value is of the wrong type or the value passed is invalid or out of range.

CBRXAPI _ERRORCODE_KEYNOTFOUND = -10003
Key not found.

A key that is passed in cannot be found. It may be misspelled or not exist in the dictionary for this

unit.

CBRXAPI _ERRORCODE_NOHANDLINGTHREAD = -10002
Unable to start handling thread.

The cbrxd needs to open a connection to the Cambrionix unit which will have an internal handling

thread. If cbrxd fails to create a handling thread it will not be able to communicate.

For a remote connection this may mean that the ssh connection could not be established due to a

bad password or the host key changing.

CBRXAPI _ERRORCODE_IDNOTFOUND = -10001
ID not found.

The unit ID passed in does not represent a Cambrionix unit or it has been disconnected since

discovery was last run.

page 33 of 33
Cambrionix API

document revision 0.9

Cambrionix Ltd, St. Johns Innovation Centre, Cowley Road, Cambridge, CB4 0WS

T: +44(0) 1223 755 520

E: enquiries@cambrionix.com

Revision history
Most recent revision first.

0.9

Add section on use of sockets

Add section on handle timeouts

Add support for EtherSync

Fixed incorrect value for default listening port

Improved response times

Added USB event driven updates

0.8

Add reference to minimum supported firmware level

Fixed current apiversion returned

Add leds, USBStrings and Attached commands

0.7

Remove listed requirement for libgtk from Linux install section

Add install instructions for OS X

Fix typo mistake “Reset” -> “Reboot” in one place

Add mode command to control all ports at once

Fix typo in Minimal Example Python code

Remove erroneous params in cbrx_apiversion JSON example

0.6

API now allows multiple requests in a single TCP connection.

0.5pre11

New keys added to Get Dictionary:

 Key.1, Key.2, Key.3, SecurityArmed

New keys added to Set Dictionary:

 SecurityArmed

0.5pre10

New keys added to Set Dictionary:

RemoteControl, Beep, ClearLCD, LCDText.row.column, Port.n.led1, Port.n.led2, Port.n.led3

0.5pre9

Linux now supports Port.n.PID and Port.n.VID

Windows installer available

cbrx_connection_id_to_os_reference call added

Unit id is now based on the serial number of the Cambrionix unit

New keys added to Get Dictionary for properties of an attached USB device:

Port.n.SerialNumber, Port.n.Manufacturer, Port.n.Description

0.5pre8 Initial public revision

