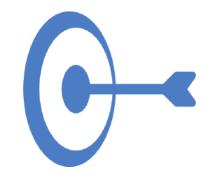


Taste Evaluation Technology

Overview


Scott Horvitz, CEO **R. Kyle Palmer, PhD,** CSO

Opertech Taste Evaluation System:

A Pioneering High Throughput Approach to Taste Testing

Faster Results

Greater Accuracy

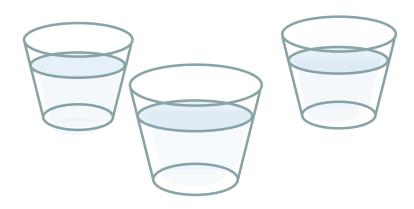
Fewer Resources

Markets

Improve taste and discover new healthier flavor ingredients

Pet Foods

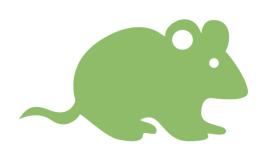
Palatability is a major driver


Pharmaceuticals

Better tasting liquid formulations

Our clientele include some of the world's largest and best known food and beverage, consumer healthcare and pharmaceutical companies.

Traditional Sensory Methods are Cumbersome


- Relatively few samples can be evaluated per test
- Many subjects are required for statistical power (20+)
- Measurements relying of sensory scaling can be inconsistent
- The large volumes of sample evaluated in sensory panels require significant quantities of materials

Opertech Solution: Universal to all Species

The First High-throughput Taste Evaluation Systems

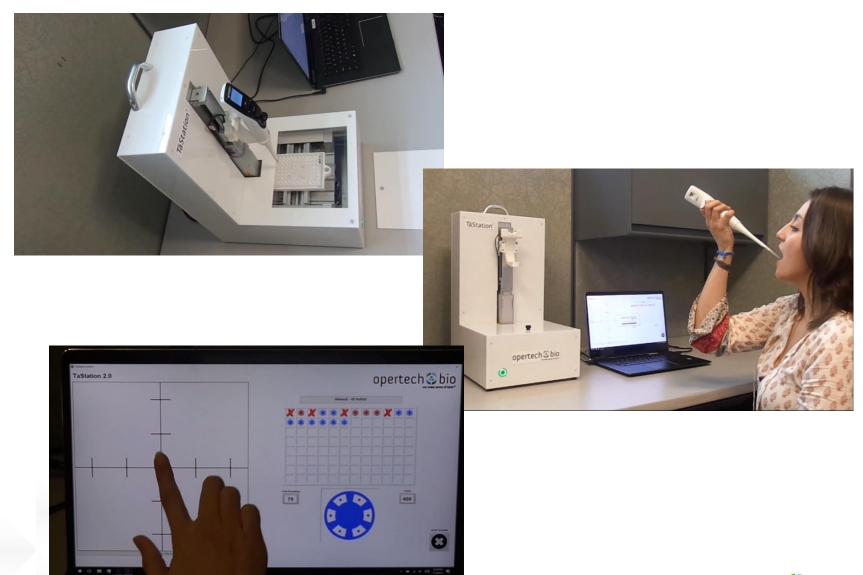
U.S. Patent No. 8,820,265

TāStation™

Rats

- In service for early stage discovery and testing, basic research
- Testing compounds not yet approved for humans

Cats and Dogs


- Development project, partnering opportunity
- Testing ingredients for the pet food industry

Humans

- In service for taste evaluation studies
- Complementing or replacing human taste panels

Rapid Throughput Taste Discrimination $T\bar{a}Station^{TM}$ 2.0

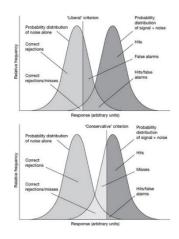
TāStation[™] Advantage

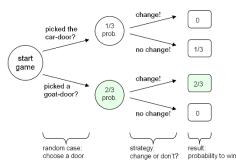
- Each subject evaluates 96 samples in ~45 minutes
- Large datasets are quickly generated
- Fewer subjects are needed
- Sample volumes are small (0.2 ml)
 - Overcomes taste desensitization
 - Reduces cost of materials required for testing
 - Pharmaceutical exposure is fraction of single daily dose
- Opertech has extensive experience in evaluating
 - Sweeteners and sweetness enhancers
 - Bitterness mitigation/blocking
- Protocols are approved by an independent, accredited, Institutional Review Board (IRB)

Proprietary Interactive Algorithms

Operant Conditioning

- Tie a consequence to the response
 - Reward accurate performance
 - Penalize poor performance


Signal Detection Theory


- Subject bias is inherent in sensory testing
- Identify, quantify, and control the bias

Game Theory

- Subjects make decisions about sensory stimuli
- Optimize decision strategies through algorithms

The TāStation™

Automated High Throughput Sample Delivery

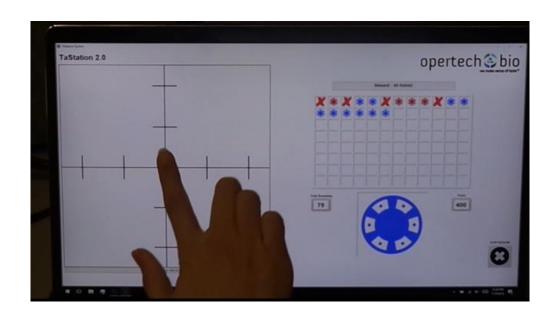
- Robotic pipette randomly selects a well from a 96-well plate
- Withdraws small volume (usually 0.2 1.0 ml)
- Presents pipette to subject
- Subject self-administers to the tongue

Samples are Distributed in a 96-well Plate

Concentration

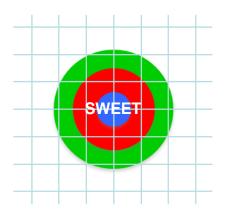
CIT QUI SUC NaCI
Water
CIT QUI
CIT QUI
NaCI
NaCI
NaCI
NaCI
NaCI

- Volumes less than a milliliter
- Milligram amounts of test materials
 - Minimizes desensitization
 - Minimizes costs or natural products
 - Minimizes pharmaceutical exposure


- Maximal flexibility in experimental design
- Ideal for concentration-response analysis and screening

Control Standards

The TāStation™

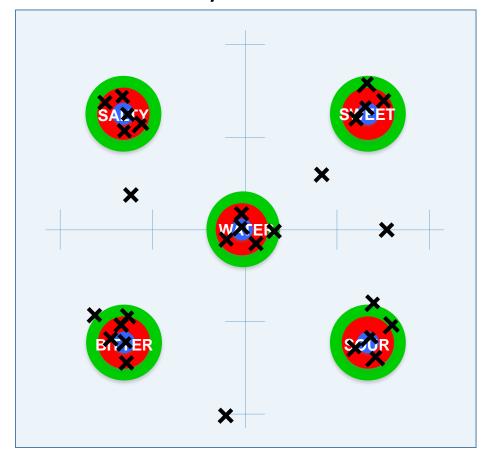

Responses have Consequences

- Subjects are instructed to search for poker chips buried in a visual field
- The taste stimulus is clue to their location
- After tasting, the subject is prompted by the computer to touch the screen
- The response has a consequence—reward or penalty—then on to the next trial
- Subject completes all 96 trials in ~45 minutes

Taste Stimuli are Mapped to Specific Coordinates on the Touch-Screen

The target is invisible to the subject

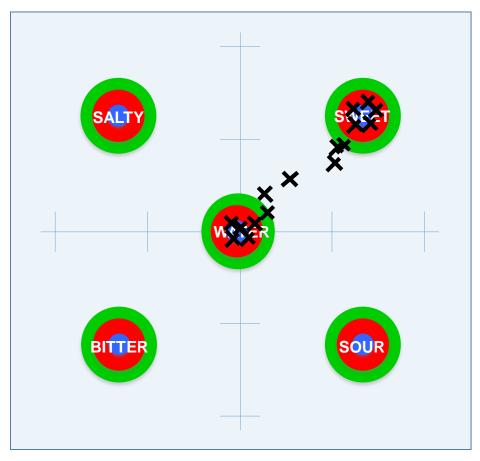
- Subjects are trained to associate a taste standard with the target locus
- Target is designed like a dart board



- Responses in the center bring the highest point value
- Point value declines with distance from center
- Penalty occasions responses made outside the target

Responses are Registered via Touch Screen Calibrated by Taste Standards

What the Subject Sees



Targets Are Invisible

- During training, subjects learn the target locations by trial-and-error
 - Correct touch responses are rewarded
 - Incorrect responses are penalized
- Responses become associated with appropriate targets

Responses to Test Articles Distribute According to Stimulus Generalization

- Test article are randomly presented multiple times (along with control standards)
- Responses to high and low concentrations of test article tend to cluster on standard target and water target coordinates
- Responses to intermediate concentrations tend to alternate or distribute between the targets

Taste – Touch – Consequence

(Structure of All Randomized Trial Sequences)

Hypothetical Examples

Training Session (All responses must be "correct")

```
Trial 1: Water – correct – reward
```

Trial 2: Quinine – correct – reward

Trial 3: Citric acid – error – penalty

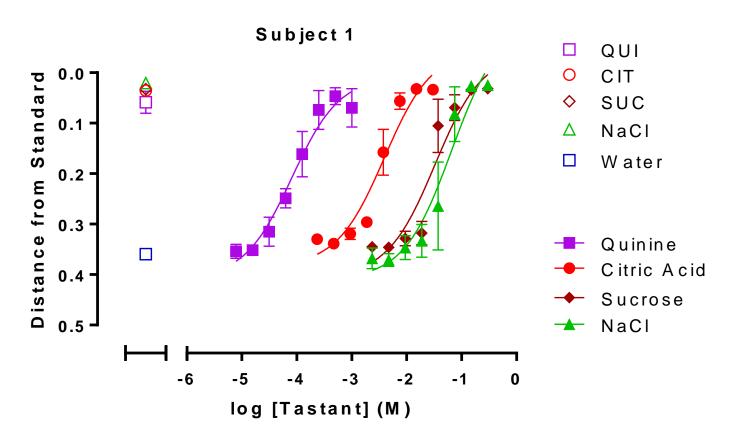
Trial 4: NaCl – correct – reward

Trial 5: Sucrose – error – penalty

Test Session (Control standard trials must be "correct")

Trial 1: Quinine – correct – reward

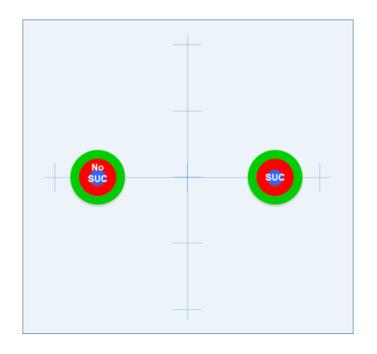
Trial 2: Water – error – penalty

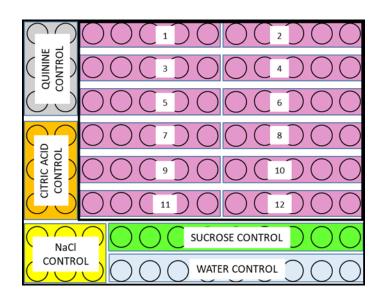

Trial 3: Test article – touch anywhere – reward

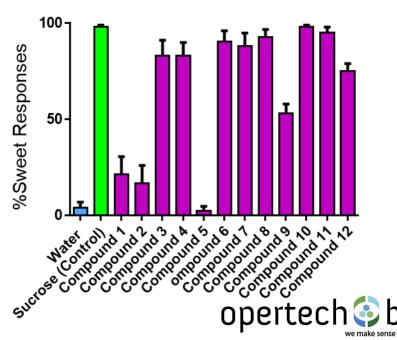
Trial 4: Sucrose – correct – reward

Trial 5: Water – correct – reward

Responses are Plotted as Distance From Standard Target Curve-fit Yields Concentration-Response Functions for Taste

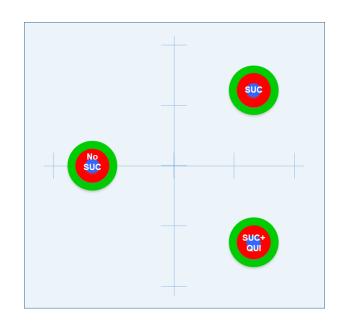


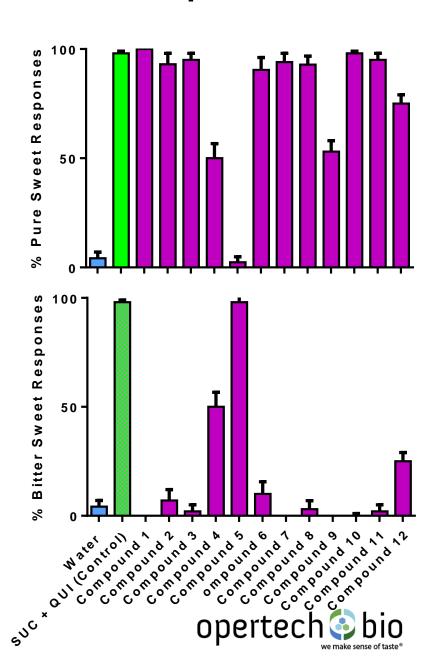

Complete concentration-response characterization for all four basic tastes achieved within single ~45 minute test session for a single subject



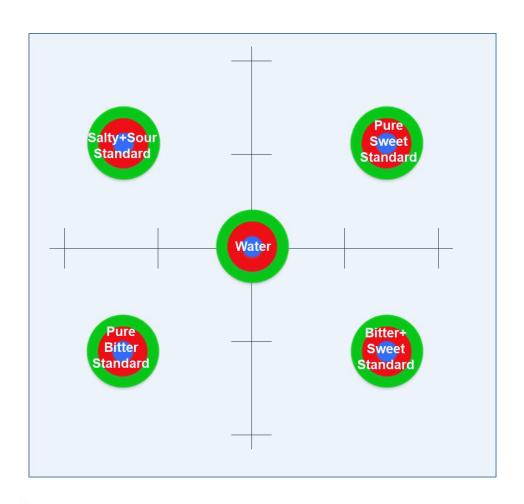
Rapid Throughput Screening for Taste Active Substances

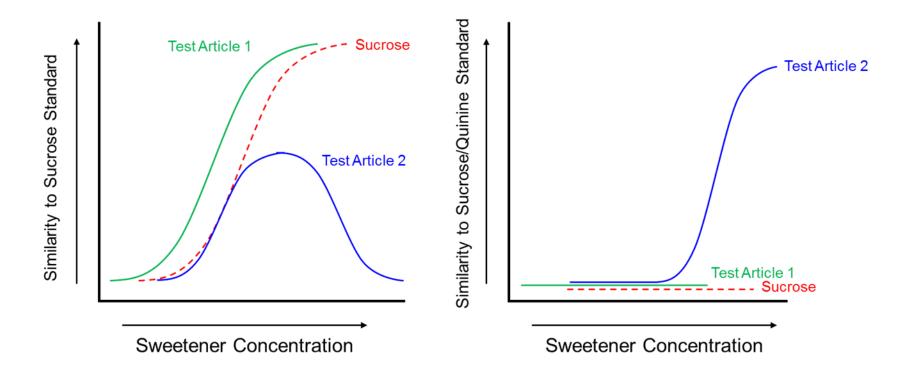
Simple "Sweet vs. Not Sweet"





Screening for Complex Taste Properties


"Pure Sweet, Bitter/Sweet, or Not Sweet"


TāStation™ Applications

The Grid Can be Programmed to Accommodate Any Sensory Endpoint

Concentration-Response Format Quantifies Taste Properties Across Entire Range of Activity

The TāStation™ Approach

- Automated sample delivery
 - Reduce human errors
 - Reduce variability by increasing consistency
 - Increase throughput
- Small sample volumes
 - Decrease amount of materials
 - Minimizes or eliminates desensitization
 - Lower cost of ingredients
 - Lower API exposure
- Interactive algorithms
 - Algorithm operates as a game
 - Consequences are tied to each response
 - Incentivizes accuracy, repeatability
 - Fun for the subject!
- Fewer subjects, more data per subject

Test Protocol

More Data = Greater Informative Power

Subjects Log-in to Each Test

Subject 1

Subject 2

Subject 3

Subject 4

Each Subject Generates 100s of Data Points Per Test

Retrieval, Mining, Analysis

TāStation™ Applications

Discovery of novel flavor ingredients

 Ideal for evaluation of new tastants, enhancers, blockers

Flavor optimization

 Combinatorial strategy for development of best-tasting ingredient mixtures

Taste acuity

- Quantification: Identify who are the best taste testers
- Training: Improve a person's taste-detection performance

Managing Subject Pool

- Rapid screening and evaluation of subjects prior to inclusion in a study
- Tracking individual performances from test to test

Data mining

Taste sensitivities and preferences across demographics

Preference ('Liking')

 Objective measure of preference (in development)

TāStation™ Flexible Business Models

Achieve optimal arrangement for client's objective

Fee for service

- Taste evaluation of new tastants, enhancers, blockers, and formulations
- TāStation™ is portable
 - Client provides samples for testing at Opertech
 - Opertech brings TāStation™ to client for testing at their location
- Taste acuity training and quantification

TāStation™ licensing

Apparatus and software

Intellectual Property

Issued patents

Covering core methodology and/or apparatus

- US Patent No. 8,820,265 issued
 Sept 2, 2014
- Europe
- Canada

Additional patent applications

Covering specifics around human TāStation™ applications

Thank You.

Scott Horvitz, CEO R. Kyle Palmer, PhD, CSO

Opertech Bio, Inc.

Korman Research Pavilion
Albert Einstein Healthcare Network
5501 Old York Road
Philadelphia, PA 19141
Phone: 215-456-8765