

White Paper

July 2007

www.headwaysoftware.com

Controlling
Architecture
with
Structure101

 Controlling Architecture with Structure101

PUBLIC Page 2 of 9 © 2007 Headway Software

Contents

Executive Summary ...3

Architecture diagrams..4

Layering and composition 4

Layering Overrides 4

Combining diagrams 5

Mapping to physical code 5

Creating architecture diagrams 6

Structure101 client..7

Structure101 IDE plug-in..7

Structure101 Web Application ..8

Summary ...9

Further Information ...9

 Controlling Architecture with Structure101

PUBLIC Page 3 of 9 © 2007 Headway Software

Executive Summary

Version 2 of structure101 focused on understanding how your code is
structured today, and where and why it is tangled or overly-complex.

Version 3 lets you additionally define how the code should be
structured and communicate this to the team so they can actually
make it happen.

The structure101 client lets you create architecture diagrams from
scratch, and/or automatically
create them from the code. You
can edit these interactively, map
architectural elements to the
physical code and discover
where and why the code
deviates.

Structure101 IDE plug-in makes
architecture diagrams visible to
each developer and warns them
if they make code changes that
are inconsistent with the defined
architecture.

The structure101 web application
makes the architecture diagrams
visible in a web browser, and
provides RSS alerts when new
violations make it into the project
mainline.

With the right information available when it is needed, each member
of the team contributes to bringing the architecture back under
control with little additional effort.

As the code-base structure and architecture improves, the
development velocity increases, and more features make it into each
iteration.

 Controlling Architecture with Structure101

PUBLIC Page 4 of 9 © 2007 Headway Software

Architecture diagrams

Often the physical structure of a code-base does not correspond to
the way in which architects and developers think about the
architecture. For example, the architecturally significant parts of the
structure may be distributed throughout the physical structure. This can
make it hard for architects to communicate the intended architectural
constraints to developers in a way that encourages them to conform.

Layering and composition
Structure101 uses a concise
visual notation for
representing architectural
layering and composition.

Here is an example of one of
the architecture diagrams
that we use for the
structure101 code-base.

The principle is simple;
components (“cells”) should
only depend on
components at lower levels,
not in the same or higher levels.

Layering Overrides
Sometimes a top-down dependency structure is too simple to capture
the intent of an architecture.
“Overrides” allow you to
override the default layering
of a diagram.

For example we may decide
to allow a specific
dependency from a cell to a
higher-level cell. The override
is shown as a green
(“allowed”) arrow on the
architecture diagram.

 (Note that enabling this
“upward” dependencies
practically merges the “hiView”, “xbase” and “graph” components
from the perspective of testing, reuse, development, etc.)

A more common example is where we wish to enforce a more strict
layering. For example we may want one layer to only use the next layer
down, but not layers below that.

 Controlling Architecture with Structure101

PUBLIC Page 5 of 9 © 2007 Headway Software

Such an override is shown as red (“disallowed”) on the architecture
diagram.

Combining diagrams
It is not necessary to include all aspects of an architecture on a single
structure101 architecture diagram.

A common scenario is where a
number of “add-ins” are distributed
across several packages. For
example, this diagram shows part of
the structure101 architecture.

It is correct , but incomplete. Classes
in assemblies.X should never
depend on classes in lang.Y. We
could express this by adding several overrides, but it is much cleaner to
use a separate diagram for this aspect of the architecture.

The next diagram defines a number of “language packs” that do not
have a direct
equivalent in the
physical structure
(they are “pure”
architecture
components), but express the architectural constraint that was missing
above.

The combination of the 2 diagrams defines the intended architecture.

Mapping to physical code
In order to understand how a physical code-base conforms to an
intended architecture, it is necessary to map the architectural
components to physical code.

Simple patterns are used to establish this mapping.

This has a number of benefits:

• If a diagram contains a component mapped to
com.headway.lang.* and the team creates a new package
com.headway.lang.cobol , then the diagram is not rendered
obsolete – all the classes in the new package map to the
intended component.

• You can create components with more complex mappings with
expressions such as com.headway.*.test.?

• I can create and show a component for which no code has yet
been created, either by specifying no pattern or specifying the
paths where I expect the new code to be implemented.

 Controlling Architecture with Structure101

PUBLIC Page 6 of 9 © 2007 Headway Software

• I can effectively “hide” physical entities from a diagram. For
example any code in com.headway.lang.cobol will simply map
to a component with the expression com.headway.lang.* - I do
not need to show package cobol on the diagram if I don’t want
to.

Another flexibility is that a physical entity maps to the component with
the most specific pattern. For example if I include 2 components, one
with com.headway.lang.* and the other with the expression
com.headway.lang.java.*, then the class
com.headway.lang.java.myClass will map to the latter. The effects
of this can be at the same time subtle and powerful. For example I
could move the component that maps to com.headway.lang.java.*
into another “parent” altogether.

Finally, each diagram has a (possibly empty) expression that maps to
“excluded” items. This is
useful if some physical entities
would otherwise undesirably
map to a component in the
diagram.

When a dependency is
introduced that violates the
architecture diagram, it is
shown on the diagram as a
curved dotted line as shown
here between component
“graph” and the higher-level
package “hiView”.

It is easy to discover the code-level cause of a violation by selecting it
on the diagram within a structure101 client or IDE plug-in.

Creating architecture diagrams
You can create a diagram from scratch or initialize one from the
physical code.

An interactive editor lets you edit diagrams to adjust the layering, add
new cells, hide cells, add overrides, etc.

When and how you create architectural diagrams will vary. For
example if you are starting a new project, you can create a diagram
(or set of diagrams) from scratch and map the cells to the expected
implementation path, and then observe the code-base as the defined
architecture is “filled-in”.

If you already have a substantial code-base, you can create a set of
diagrams automatically from the code-base, to the appropriate level

 Controlling Architecture with Structure101

PUBLIC Page 7 of 9 © 2007 Headway Software

of detail. Using the editor, you can adjust the layering where the
architecture should differ from the current as-built structure.

On an iterative project, you can edit the current architecture diagrams
so that they represent the architecture at the end of the next iteration
so as to guide the team during the iteration, and to give you a bench-
mark against which to monitor progress.

Structure101 client

An architecture perspective allows the creation and editing of the
architecture diagrams associated with a project.

As well as starting with a blank diagram, you can initialize an
architecture diagram
from structural
diagrams in the
composition and slice
perspectives (look for
the button). For
example you could
create a diagram from
a design tangle in the
slice perspective, and
then edit it to define
how the packages
should be layered.

The architecture
perspective is selected
by selecting the button on the vertical perspective tool bar on the
top-left of the window.

Tagging is available as in other perspectives, and persists across
perspectives. This is useful for analyzing the physical to logical mapping
(tag in one perspective and then switch to another).

Once the diagrams are published to a project in a repository, any
developers that have installed the IDE plug-in and linked it to that
project will see them and start receiving warnings based on them.

Structure101 IDE plug-in

The structure101 IDE plug-in makes the project architecture diagrams
visible to each developer and warns them if they make inconsistent
code changes.

Once developers link the plug-in to the structure101 repository that
contains the project architecture diagrams, they will always see the
most recent updates within the IDE. They can immediately see any
existing violations on the diagrams, and can navigate to the

 Controlling Architecture with Structure101

PUBLIC Page 8 of 9 © 2007 Headway Software

responsible code. They can also receive compilation warnings or
errors.

A key feature of the plug-in is that it can be set to only give build errors
for new violations. This is
achieved by defining a
reference structure in the
structure101 repository
against which the local
code-base structure is
compared. Typically this may
be set to the last iteration or
nightly build. This is important
in the case where there are many existing violations that would swamp
the developer with warnings.

By only highlighting new violations as they are created in the local
development environment, it is relatively easy for developers to
conform to the architecture as they continue development. In this way
the code can evolve towards the intended architecture with minimal
disruption to ongoing development activities.

Structure101 Web Application

This web-enables structure101 repositories.

Structure101 clients and IDE plug-ins
can access architecture diagrams
and reference structures by providing
the URL of the web application.

Additionally, architectural information
is made easily accessible to web
browsers:

• Architecture diagrams

• New and removed architecture
violations

• Degree of architecture violation
across projects

• Violation trends over time

As well as making the information available in a web browser, the web
application supports RSS feeds – for example for notification of new
architecture violations.

 Controlling Architecture with Structure101

PUBLIC Page 9 of 9 © 2007 Headway Software

Summary

Structure101 allows you to define concise, expressive architecture
diagrams that map to the physical code.

You can define these up-front on a green-field project ; by auto-
generating from an existing code-base and then editing; and/or edit
the current architecture for the next major iteration.

Existing architecture violations are overlaid on the diagrams within the
structure101 client, IDE plug-in and web application, and you can
easily discover their origin.

Keeping the architectural model in a central location means that the
team always works off the current version.

Warning developers immediately when they create or modify code in
violation of the architecture prevents the structure degrading any
further, and encourages gradual improvement.

The ability to differentiate recent violations keeps architectural
compliance close to development activities and therefore
manageable.

Having all the diagrams and derived information accessible by browser
means that the whole team has instant access.

Being web-enabled, structure101 works equally well for localized or
distributed development projects.

Using structure101 to communicate a target architecture to the whole
team makes architectural control simple, practical and even
enjoyable for the first time.

Further Information

Email: hwinfo@headwaysoftware.com

Web: www.headwaysoftware.com

Blog: http://chris.headwaysoftware.com

