Renegotiating TLS

Marsh Ray
Steve Dispensa
PhoneFactor, Inc.

v1.1 November 4, 2009

Summary

Transport Layer Security (TLS, RFC 5246 and previous, including SSL v3 and previous)
IS subject to a number of serious man-in-the-middle (MITM) attacks related to
renegotiation. In general, these problems allow an MITM to inject an arbitrary amount of
chosen plaintext into the beginning of the application protocol stream, leading to a
variety of abuse possibilities. In particular, practical attacks against HTTPS client
certificate authentication have been demonstrated against recent versions of both
Microsoft 1IS and Apache httpd on a variety of platforms and in conjunction with a
variety of client applications. Cases not involving client certificates have been
demonstrated as well. Although this research has focused on the implications
specifically for HTTP as the application protocol, the research is ongoing and many of
these attacks are expected to generalize well to other protocols layered on TLS.

There are three general attacks against HTTPS discussed here, each with slightly
different characteristics, all of which yield the same result: the attacker is able to
execute an HTTP transaction of his choice, authenticated by a legitimate user (the
victim of the MITM attack). Some attacks result in the attacker-supplied request
generating a response document which is then presented to the client without any
certificate warning or other indication to the user. Other techniques allow the attacker to
forward or re-purpose client certificate authentication credentials.

Technology Background

TLS is a widely used protocol, but there are a number of features (standardized and
otherwise) that are inconsistently implemented and used. Following is a brief summary
of TLS negotiation, and an explanation of two relevant features of the protocol.

Basic TLS begins negotiation with a Client Hello message sent by the client to the
server, including the list of supported cipher suites. The server responds with a Server
Hello, selecting an appropriate TLS version and cipher suite to use in the initial TLS
session. The server also responds with its certificate, and finishes with a Server Hello
Done. The client then establishes an encryption key, each side sends a Change Cipher
Spec message to activate encryption, and each sends a Finished request to its peer.

There are a number of variations on this theme, but this is the common case.

At this point, bi-directional encryption has been negotiated, and future messages
(including control messages) are encrypted between the peers.

The standard permits either end to request renegotiation of the TLS session at any time.
The ostensible reason for this is to allow either end to decide that it would like to refresh
its cryptographic keys, increase the level of authentication, increase the strength of the
cipher suite in use, or for any other reason. For the client to trigger a renegotiation, it is
sufficient for it to send a new Client Hello message (in the encrypted channel, like
any other handshaking message). The server responds with a Server Hello, and
negotiation goes exactly as above. The server may also initiate a renegotiation by
sending to the client a Hello Request message. The client then simply sends a new
Client Hello, exactly as above, and the process goes as usual.

Each TLS negotiation results in an established TLS session with an assigned Session
ID. TLS allows for session resumption, wherein the client specifies a Session ID from a
previous session. Session resumption can save the server time and CPU by obviating
the need to do a full cryptographic initialization (together with its attendant
computational costs). It is important to note that session resumption seems to have
been designed as an optimization, not as a security-related feature of the system.

Specific Problems
Scenario: Client certificate authentication

HTTPS servers which can be configured to provide client certificate authentication
generally allow it to be configured on a per-directory basis. (It appears that Microsoft IS
defaults to this configuration. At the time of this writing, it can only be changed through a
manual metabase edit.) This implies that the server cannot insist that the client provide
a valid certificate until it has received the request from the client and filtered it through
its authentication rules.

For requests that are found to require client certificate authentication, the HTTPS server
must then renegotiate the TLS channel to obtain and validate the certificate from the
client. If the the certificate is found to be valid the server is then obligated to process the
request.

Unfortunately, because HTTP lacks a specific response code to instruct the client to
resubmit the request within the newly authenticated channel, the server must apply the
authentication retroactively to the original request. Even though there is no gap in the
encryption (negotiation of the new keys is conducted under the protection of the old),
there is a loss of continuity in the authentication of the server to the client. This
"authentication gap" is the central weakness exploited by these attacks.

In the absence of session resumption, there is no significant cryptographic state carried

over from the initial client connection to the renegotiated session. None of the HTTPS
clients or servers tested were observed to conduct session resumption during
renegotiation (much less require it, as IT is an optional part of the protocol). In fact,
resumption is designed purely as an optimization for resuming a previous cryptographic
context, whereas renegotiation is designed to begin a new cryptographic context. In that
sense, the two operations were designed for orthogonal purposes.

This attack has been demonstrated against recent versions of Apache httpd and
Microsoft 1IS, with a variety of clients.

Scenario: Differing server cryptographic requirements

HTTPS servers that host resources with varying cipher suite requirements may be
vulnerable to another renegotiation attack. Because of the variations in the level of
cipher suite strength, the web server has to be willing to negotiate TLS at the most basic
encryption level supported on the server. Only after having seen the URL requested by
the client can the server accurately determine which cipher suites will be acceptable.

If the current cipher suite is not one of the required cipher suites, the server must
request a renegotiation and agree on new parameters. The act of soliciting client
renegotiation triggers the same weakness as in the case of client certificates: the server
is forced to replay the buffered request, which in this case includes the chosen plaintext
of the attacker.

Of course, the attack depends on tricking the client into authenticating the transaction
requested by the MITM. One way this can be done is via “request splicing”, i.e., having
the man-in-the-middle splice two requests onto the beginning of the client's intended
communication. The first is a request to any (perhaps unrelated) resource that triggers
renegotiation, and the second request is the injected attack, ending with a custom
“ignore” header prefix (lacking line termination). This ignore header causes the first
request line from the client, the HTTP request line, to be effectively “commented out” by
the ignore header, and therefore ignored by the server. The remaining headers are
automatically spliced onto the attacking request, including any Cookie or other
authentication/authorization headers sent by the original client. This has the effect of
authorizing the attacker's request. The researchers suspect that most forms of HTTP
authentication are susceptible.

One way to make this attack work in practice is to leverage the HTTP 1.1 pipelining and
keep-alive facilities. This allows the attacker to submit both requests in a single
segment, ahead of the triggered renegotiation. An example MITM-generated request
buffer looks like this:

char *req =
"GET / highsecurity/index. htm HTTP/1.1\r\n"
"Host: exanple.comr\n"
"Connection: keep-alive\r\n"
"\r\n"

"GET /evil/doEvil.php?evil Stuff=here HTTP/ 1. 1\r\n"
"Host: exanple.comr\n”
"Connection: close\r\n"
" X-i gnore-what - conmes-next: ";

The client then completes the second request with his own request:

char *origi nal Request =
"GET /good. html HTTP/1.1\r\n"
" Cooki e: Aut hMe=NowA r\ n"
"\r\n";

The net effect looks like this to the server:

GET / highsecurity/index. htm HITP/ 1.1
Host: exanpl e.com
Connection: keep-alive

CET /evil/do. php?evil Stuff=here HITP/ 1.1

Host: exanpl e. com

Connection: cl ose

X-ignore-what-cones-next: GET /index.htm HITP/1.1
Cooki e: Aut hMe=Now

Scenario: Client-initiated renegotiation

TLS equally allows the client side of the connection to initiate a renegotiation. This case
is perhaps more attractive to the attacker because he does not need to elicita Hello
Request from the server, so no particular server-side configuration is required for this
attack to succeed.

In the HTTPS domain, a practical attack involves the MITM splicing an initial request
with an un-terminated HTTP “ignore” header onto the beginning of the client's intended
request, again stealing whatever authentication or authorization information provided.
Note that this does not require pipelining or HTTP keep-alive. In all other respects, the
server sees the same sort of request buffer as above.

This attack has been tested and found to work against a current Apache. See the
appendix for an illustrative trace.

Implications

The theoretical impact of this issue is potentially significant. To the extent that a
compliant implementation of TLS allows an attacker to inject arbitrary plaintext into an
authenticated session, it violates a core assumption made by application developers
and protocol designers.

Most existing installations which currently rely on client certificates for authentication
appear to be vulnerable.

Shared hosting environments which allow untrusted customers served from the same IP
to configure any aspect of their encryption parameters appear to be vulnerable.

Most or all server applications built on TLS implementations which honor client-initiated
renegotiation are vulnerable.

Mitigation

There seem to be few silver bullets to address these issues. Generally, they seem to
have arisen due to incomplete or vague specifications of the interactions between TLS
and application protocols (particularly HTTP), and sometimes because there were
simply no alternatives.

Mitigation of the HTTPS client certificate attacks is difficult and involves tradeoffs. One
possible solution is to require client certificate presentation immediately, before the
presentation of the HTTP request to the server. While perhaps feasible, the
implementation of this feature by common web server software is inconsistent - while
the certificate may be prompted for, the client may in some cases simply refuse to
respond with a valid certificate. In those cases, the server may fall back to the
vulnerable behavior. This change also has the side effect of transmitting the client
certificate chain in the clear, whereas previously it was protected within the first
encrypted session.

From a broader perspective, though, that strategy has problems. For one thing, web
servers often host content with varying certificate authentication requirements. One
subdirectory might be the "secure" area of the site, requiring client certificate
authentication, while another area may be an "anonymous" area such as a landing
page. Simply requiring every visitor to the site to supply a valid client certificate may be
impossible, since it completely prevents public viewing of the site. Even presenting
visitors with the option of supplying client certificate authentication for every visit to the
site is likely to be unacceptable from an user interaction perspective. One scenario for
mitigation involves web developers reorganizing their sites to strictly separate areas of
each site into zones based on their differing requirements for authentication, with zones
being served from distinct IP addresses. One can imagine the high costs of such a
transition, although there are ways to partially or fully automate this separation.

Other mitigations involve protocol changes, but again, they generally have their own
issues. In some cases, compatibility with old client software is broken completely. For
example, the server could require session ID resumption across renegotiations, but that
would represent a breaking protocol change and introduce an incompatibility with most,
if not all, current client software. It is unclear whether resumption is even technically
allowed (by the current standard) during renegotiation and in practice it has not been

observed by the researchers.

The right long-term solution to the renegotiation problem involves a much more careful
binding between TLS and upper protocol layers. This could be handled in a variety of
ways, including breaking and backwards-compatible changes.

Cipher suite upgrade attacks can be minimized in a few ways. One obvious way is to
require all content on a site to use a single cipher suite. Disallowing specification of TLS
parameters in .htaccess files (generally modifiable by end users) may also be a good
idea.

Clients need to be improved to take into account the things learned during this research.
For one thing, browsers' behavior of allowing automatic certificate sending is suspect
and should be reconsidered. Secondly, browsers suffer from a fundamental inability to
authenticate the specific transaction the server is about to execute, ostensibly on behalf
of the client. That underlying problem should be addressed, and will likely involve either
a protocol change or changes in the way existing protocols are implemented.

Finally, it may make sense to require clients to authenticate servers using the supplied
certificate before handing client certificates back to the server. This will effectively
prevent the chosen-server attack scenarios described above. This may also represent a
breaking protocol change, however, and is being investigated.

Next Steps

During the process of investigating these issues, the researchers ran across a number
of additional areas that merit further work. Judging from recent experience, it is
anticipated that the problem domain will continue to evolve in the coming weeks.

Development continues on effective exploitation techniques for some of the more
difficult cases. These cases include refinements to the request splicing technique
described above to better accommodate POST requests authenticated by HTTP
headers.

Early research suggests that digital certificates embedded on smart cards are equally
vulnerable to the client certificate authentication attacks. The researchers hypothesize
that the fact that the certificate is embedded on a smart card offers no protection for
these weaknesses at the protocol level.

Another promising area of investigation is cross-protocol exploitation. An exploit
scenario might go like this: client (victim) opens his web browser, which automatically
requests his homepage via HTTP. MITM edits the response to embed an invisible
image linked to the https site to be attacked. The client browser then makes a request to
the chosen site, the MITM intercepts it, and the attack proceeds as above. Aiding the
attack are common client browser settings allowing the browser to provide client
certificates silently in cases where there appears to be a reasonable default choice. This

would lead to a virtually automatic exploitation of an unsuspecting end user. Because
any server can be compromised simply by a well-meaning user navigating to that
server, this could be used by the operator of a hostile network as a way to attack a
server on a remote network (all without the user's knowledge).

TLS includes a 64-bit sequence number which begins at zero and increments with every
transmitted record. Implementations are required to perform a renegotiation before it is
allowed to wrap. Although this is unlikely to be a practical attack, one can imagine that
some implementations of TLS may renegotiate well in advance of approaching this limit.
In any case, the ability of an attacker to trigger renegotiation via this mechanism would
have similar consequences to those described above.

Acknowledgments

We would like to thank Frank Heidt of Leviathan Security for initial peer review, for
helping us to understand the scope and severity of the issues, and for providing advice
on how to most appropriately conduct the disclosure process.

We also thank Ben Laurie of Google and the OpenSSL core team for his valuable
consultation and peer review during this process.

Finally, we express our gratitude to Steve Manzuik and ICASI for providing a framework
within which to disclose responsibly to an initial set of affected vendors.

Appendix: client-initiated renegotiation support in Apache 2.2.3

Following is output from OpenSSL's s_client test program, pointed to a stock Debian
Apache 2.2.3 server. Note the line with the single “R” initiates a renegotiation, and the
following line RENEGOTIATING was emitted by the s_client program to indicate that a
renegotiation was in process. Note also that it successfully occurs before the HTTP
headers are terminated. After the renegotiation is complete, the final newline is sent,
causing the response to be sent.

Pl at o: ~ di spensa$ openssl s_client -connect dispensas.com 443
- ci pher EXP- RC4- MD5

CONNECTED(00000003)

...(certificate verification process trinmed)...
GET / http/1.0

X-ignore-me: CET /

R

RENEGOTI ATl NG

...(certificate verification process trimed)...
read R BLOCK

HTTP/ 1.1 200 K

Date: Wed, 23 Sep 2009 14:23:07 GVIr

Server: Apache/2.2.3 (Debian) PHP/5.2.0-8+etchl5 nod _ssl/2.2.3
OpenSSL/ 0. 9. 8c

Last - Modi fi ed: Mon, 21 Sep 2009 00:24:57 GMI

ETag: "33ecf-54-4740b82eeeB840"

Accept - Ranges: bytes

Content-Length: 84

Connection: cl ose

Content - Type: text/htm ; charset=UTF-8

<ht ml ><head><title>lt Wrked! </titl e></head><body><hl1>lt Wrked!
</ hl1></ body></ ht m >

cl osed

Pl at o: ~ di spensa$

The client-initiated attack appears to work between a wget client and OpenSSL's
simple web server:

client €0 Wi

File Edit View Go Capture Analyze 5Statistics Telephunz Tools Help

B EEX2e a¢csnT2IEE Qaan @08 % B
Filter: | tcp.stream eql ~ Expression.. Clear Apply
Mo, . Time Source Destination Protocol Info
5 2005-08-28 14:21:51.129905 152.168.80.17 152.168.B80.126 TCF 19761 > https [SYN] Seq=0 win=16384 Len=0 M35=1460 wS=0 TSv=4104152227 TSER=0
6 2008-00-28 14:21:31.130011 152.168.80.126 192.168.80.17 TCF https » 19761 [S¥N, ACK] Seq=0 Ack=1l win=8192 Len=0 M55=1460 wsS=8 TSv=1625999
7 2008-00-28 14:21:31.130904 152.168.80.17 152.168.80.126 TCF 19761 > https [ACK] Seq=1 Ack=1 win=16384 Len=0 TSv=4104152227 TSER=1625999
S 2009-00-28 14:21:31.432022 152.168.80.17 152.168.80.126 TLSVL client Hello
10 2009-09-258 14:21:31.433377 192.168.80.126 192.168.80.17 TLSWL server Hello, cCertificate, server Hello Done
11 2009-09-28 14:21:31.452919 192.168.80.17 192.168.80.126 TLSWL Client Key Exchange, Change Cipher Spec, Finished
12 2009-08-28 14:21:31.455008 152.168.80.126 192.168.80.17 TLSVL Change Cipher spec, Finished

13 2009-05-28 14:21:31,485935 192.168. 192.168.80.126 SsL [S5L segment of a reassembled POU]

2 121] 1 1 7 odl 5 Client Hello
15 2009-09-28 14:21:31.456012 152.168.80.128 192.168.E0. https » 19761 [ACK] Seq=904 Ack=5630 win=566048 Len=0 TSv=1626035 TSER=41041522
16 2009-09-28 14:21:31.4596736 152.168.80.126 192.168.80.17 TLSw1 server Hello, Certificate, Server Hello Done
17 2009-09-28 14:21:31. 699937 152.168.80.17 192,168, 80.126 TCR 15761 > https [ACK] Seq=630 Ack=1831 win=16384 Len=0 TSv=4104152228 TSER=162§
20 2009-09-28 14:21:31. 8885944 152.168.80.17 192,168, 80.126 TLSwl Client Key Exchange
22 2009-09-28 14:21:32. 079041 192.168.80.128 192.168.80.17 TCR https » 19761 [ACK] Seq=1831 Ack=7F95 win=63792 Len=0 TSw=1626054 TSER=4104152
23 2009-09-28 14:23:06, 907407 152.168.80.17 192,168, 80.126 TLSwl Change Cipher spec, Finished
24 2009-09-28 14:23:06, 207900 192.168.80.128 192.168.80.17 TLSwl Change Cipher spec, Finished
25 2009-09-28 14:23:07.111400 152.168.80.17 192,168, 80.126 TCR 15761 > https [ACK] Seq=885 Ack=1%21 win=16384 Len=0 TSW=4104152413 TSER=1633
31 2009-09-28 14:24:51. 7063598 1%92.168.80.17 1592.168.80.126 HTTF GET index.htm] HTTP/1.0
32 2009-09-28 14:24:51. 902481 192.168.80.126 1592.168.80.17 TCFP https » 19761 [ACK] Seq=15%21 Ack=1071 win=63536 Len=0 TSv=1646076 TSER=410415
[Follow SSL Stream (=] & |
|| Stream Content 1
Frame 14 (183 bytes on wire, 183 bytl| | -t Jeuil.html HTTRAL. 0
Ethernet II, Src: vmware 87:9F:98 (0|| x-ignore: GET Aindex.htm] HTTR/1.0
% Internet Protocol, Src: 162.168.80.1 User—Ageg}é wyet,/1.11.4
. s AcCcept:
Transmission Control Protocol, Src B Host: wsOl.mogul.test
= Secure Socket Layer connection: Keep-Alive
-l TLSwl Record Layer: Handshake Prot
Content Type: Handshake (220 |
version: TLS 1.0 (0x03010
Length: 112
7 Handchake protnenl: ~liant Hallo
0000 00 50 56 <0 00 08 00 Oc 29 87 O -nd -Sa\.re -rint Entire conversation (148 bytes)) ASCIH () EBCDIC () HexDump () CArrays @ Raw
0010 00 a% 1b 3d 40 00 40 06 fd 31 ¢ --- IZ|
0020 50 Fe 4d 31 01 bb 52 d7 d2 42 £
0030 40 00 Od 67 00 00 0L Q01 08 Ca fi : :
0040 of af 16 03 oL 00 70 F1 74 cc b P | Filer Out This Stream | | Llose
0050 82 8 9a 70 39 9b <6 34 8h 32 a
0060 46 a0 39 fb 14 74 88 c9 23 22

GETET Ta U FE T F-
0070 ec 60 Of 1b a2 80 fb 2e h3 87 ff 50 fc de 85 38 :
0080 d3 97 47 84 a6 cc 2b 5S¢ 2f 2c <l e8 ac 61 24 1a

m

m

Frame (183 bytes) | Decrypted S50 record (83 bytes) |

basic TLS handshake

client hello >

server hello

certificate

AAA

server hello done

client key exchange

finished

>
change cipher spec >
>

< change cipher spec
€ —————fnished . ___ . ___

TLS handshake with client cert
(ideal)

client hello >

server hello

certificate

certificate request

AAAA

server hello done

certificate

client key exchange

>
>
certificate verify >
>
>

change cipher spec

finished

< change cipher spec
o -—-..—-—finished .. ___ . ___

TLS handshake with client cert (typical)
C S

client hello >

server hello

certificate

server hello done

AAA

client key exchange

>
change cipher spec >
finished >

< change cipher spec
< finished

server-initiated
renegotiation

finished
HTTP/1.1 OK

TLS handshake with client cert - mitm remix

C m S
client hello >
client hello >
< server hello
< certificate
< server hello done
client key exchange >
change cipher spec >
................ finished .__..........p
< change cipher spec
< -——-..——fnished . ___ . ___
... POST [secure/evil html HTTP/1.1 _p,
server-initiated renegotiation ¢ -—---- hello.request _ _ .. __
replay P--onannnnooo-Clienthello >
« server hello d--—- - serverhello, _ _ _ . . _ __
< certificate 4---—- certificate .. _ _ _ . _ _
< certificate request 4 ---- certificate request _ _ .. _ _
< server hello done o — - SeVEr hellodone _ _ .. _ _ |
certificate B eeeena certificate . ___________ >
client key exchange P nnnn- client key exchange. . __.._. >
certificate verify B eeenns certificate verify. ... ___... >
change cipher spec P cnnnn- change cipher_spec >
finished
< change cipher spec o4 --- change cipher spec_ _ .. _ _ |
finished
HTTP/1.1 OK
GET /secure HTTP/1.1

	Renegotiating_TLS
	Renegotiating_TLS_pd

