

What will it do for the students?

- High School
 - -Build problem solving skills
 - -Expose the reality behind the equations
 - -Change perception that "physics is hard"
 - Attract more students in science & engineering
 - -Help disadvantaged students

What will it do for the students?

- College
 - -24-7 help in large classes
 - Change perception that "Physics is a weed-out class"
 - Excite them about what lies beyond Introductory Physics
 - -Better prepared for specializations
 - -Retention

What will it do for the students?

- Helps entire spectrum of performers
 - High performers can explore on their own and go beyond the expectations in a beginning Physics course
 - Low performers improve their ability with more practice and help from the software.

Concept Map for Projectiles

Pose problem on "Variables" window

- 114
Discard Changes (Esc) Add Derived Variables
DESIRED variables Check the one variable you need.
C Gravity - g
O Launch Angle - theta
C Time-t
C x-Final-x_f
C x-initial - x_i
C x-Velocity - V_x
C y-Final - y_f
C y-Initial - y_i
C y-Velocity Final - V_yf
⊂ y-Velocity Initial - V_yi

Concept-Map displays solution-path

Concept-Map displays solution-steps Post Processing

Step 1: Solved variable "x-Velocity" in equation "Launch"

Step 1: Solved variable "Launch" Velocity" in equation "Launch"

Step 1: Solved variable "y-Velocity" Initial" in equation "Launch"

Step 1: Solved variable "Time" in equation "x-Position"

Computations in "Solution" window.

nultaneous Equations			
Simultaneous Equations Solutions	DN		
Node Launch			
□ V - Launch Velocity	=	0	
🗖 theta - Launch Angle	=	0	
□ V_x-x-Velocity	=	0	
Node Launch			
□ V - Launch Velocity	=	0	
🗖 theta - Launch Angle	=	0	
□ V_yi - y-Velocity Initial	=	0	
Node x-Position			
□ x_i - x-initial	=	0	
□ V_x-x-Velocity	=	0	
🗖 t-Time	=	0	
□ x_f-x-Final	=	0	
Node y-Position			
🗖 y_i - y-Initial	=	0	
🗖 V_yi - y-Velocity Initial	=	0	
□ t-Time	=	0	
🗖 g - Gravity	=	0	
□ y_f-y-Final	=	0	
Solve Clear Solution	F	inished	
Solution:		1	

Contents

- Vectors
- Mechanics
 - 1-D Kinematics, Newton's Law
 - Projectile
 - Relative Velocity
 - Circular Motion
 - Coupled Motion of Multiple Bodies
 - Rigid Body Rotation
 - Collision and Momentum
 - Conservation of Energy
 - Planets & Satellites
- Heat & Thermodynamics
 - Ideal Gas Law
 - 1st Law of Thermodynamics
 - Cyclic Processes
 - Carnot Cycle
 - Gas-Diesel Engines
 - Efficiency

- Waves/Oscillation/Sound
 - Simple-Harmonic-Motion
 - Organ Pipe
 - Doppler Effect
- Fluid Mechanics
 - Bernoulli Equation.
- Electricity
 - Point charges, field, potential, lines of force
 - Distributed charges on Cylinder, sphere, disk, rod, plane
 - Capacitors
 - Capacitors in Series & Parallel
 - Resistors in Series & Parallel
 - RC Circuits
- Magnetism (under preparation)
- Optics
 - Lenses
 - Mirrors

Vectors

1-D Kinematics & Newton's Law

Projectile

Relative Velocity

Circular Motion

Coupled Motion of Two Bodies

Collision & Momentum

Conservation of Energy

Planets and Satellites

Ideal Gas Law

1st Law of Thermodynamics

Carnot Cycle

Gamma of gas 1.4 Cv of gas 12.47			10
Given at state-a; choose any three Image: Pressure Volume Image: Temperature Image: number of moles 100000 0.09976 600 2 Ready Calculate Image: Calculate Image: Calculate	at in Q_H		1.0
Given at state-b; choose one ✓ Pressure ✓ Volume Temperature 50000 0.19953 600 Ready Calculate	c	Isoth Isother	T_H
Given at state-c; choose one Calculate	Work, Heat, ar	nd Einergy	
T Pressure T Volume T emperature	Work	Heat	Energy
1069.16 3.11045 200 Isothermal Process a-b: Change in Energy is zero	6915.39	6915.39	0
Ready Calculate Adiabatic Process b-c: Heat is zero	9976	0	-9976
State-d Isothermal Process c-d: Change in Energy is zero	-2305.13	-2305.13	0
Pressure Volume Temperature Adiabatic Process d-a: Heat is zero	-9976	0	9976
2138.33 1.55522 200 Net Work, Heat, and Energy for Cycle	4610.26	4610.26	0
Efficiency (Net Work/ Heat Inflow) 0.66666 Efficiency (Thot - Tcold)/Thot		0.66666	
A COURSE Help Refresh Close	Pot	enti	a, In

Gas/Diesel Engines

Efficiency

Simple Harmonic Motion

Organ Pipe

Organ-Pipe (contd.)

Bernoulli Equation

Point Charges

Ek Charge 2e-6	ectric Potentia X Y -2 3	Charge 1	ines of Force
3e-6 0 0	4 -4 0 0 0 0	Charge 2 Charge 3 Charge 4	k = 8.988E9
Enter S 0.887 C Enter Loca E 0	Done System Potenti X E-2 Calculate Field x ation o nter Field at Lo X E2 X E3	al Energy (x . Correct and Potential a Y ocation (x . xx)	xxx format) Check at a Location Done (format)
0 O Checł	X E3 X E4 K Answer Help	Draw Line	es of Force

Distributed Charges

🖳 sphere		
Charge "Q" on Sphere	1	
Radius''R'' of the Sphere		
Location on r-Axis		- E
K=8.988 E9	ок	
Enter Field Component (x.xxx	format)	
Enter Potential (x.xxx format)		
	Check Answer	

Capacitors

RC - Circuits

💀 Electrical Circuits	$\overline{\mathbf{X}}$	🖷 equations	_ 🗆 🔀
Enter # of Nodes 3 (Max. 10) Done HELP Ground Node 3	RC Circuits Enter Resistors End-1 End-2	+ (1 /R1) (v1 - v2) + (1 /R2) (v1 - v3) - IV1 = 0 + (1 /R1) (v2 - v1) + (1 / R3) (v2 - v3) + IV1 - IC1 = 0	
Enter Voltage Sources Red Blue Node 1 2 0 0 0 0 0 Done	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	v1 - v2 = Voltage Source-1 IC1 = Current Source-1 v3 = 0	
Enter Current Sources Red Blue Node 2 3 0 0 0 0 0 0	Enter Capacitors End-1 End-2 0 0 0 0 0 0 Show Equations		
DoneCLOSE			

Lenses

Mirrors

