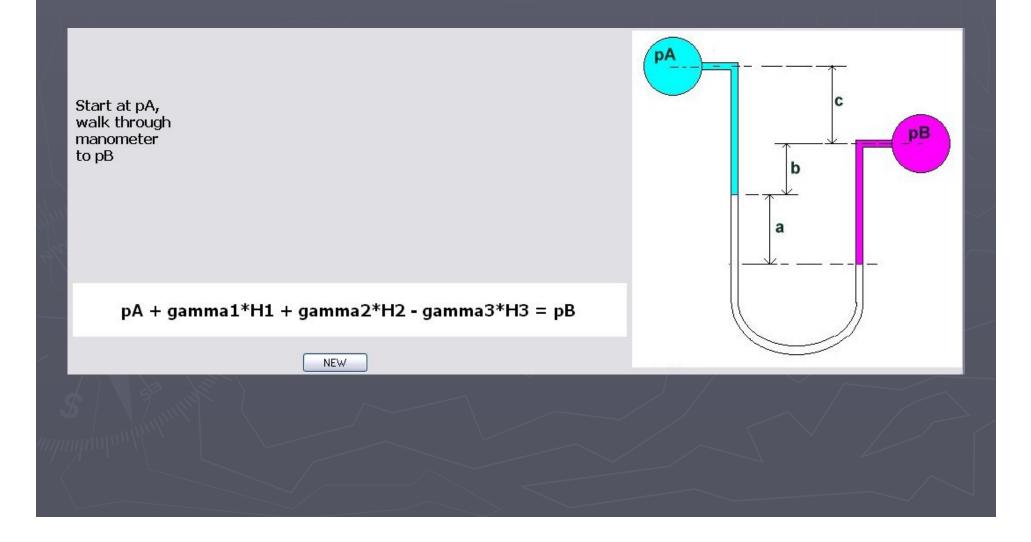
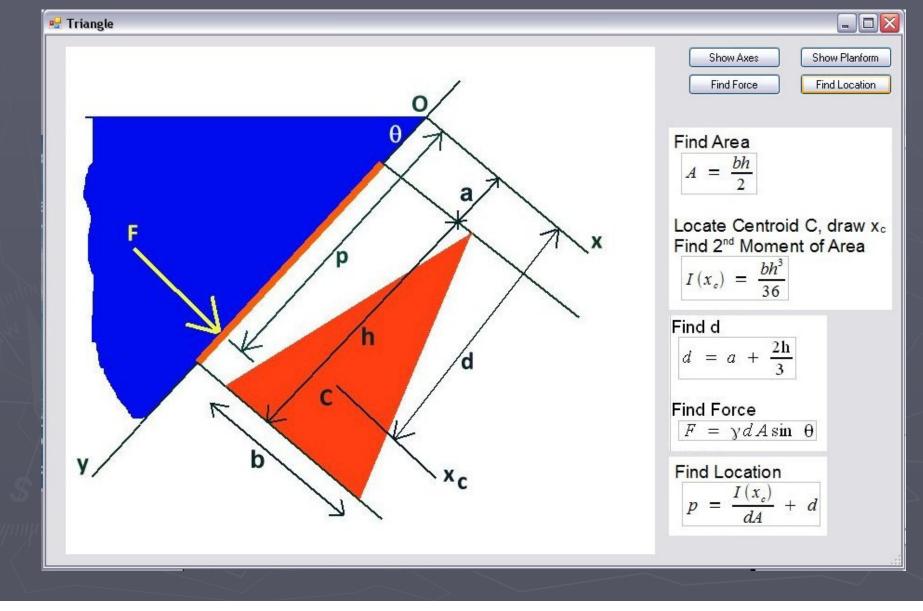


FluidMechPower


Your 24/7 Tutor for Fluid Mechanics

Actus Potentia, Inc. <u>www.actuspotentia.com/Fluid.shtml</u>


What will it do for Students

- You will get a strong foundation through guided problem solving
- You will know where to start and where to go from the step-by-step instructions
- You will get immediate feedback so that you can fix your mistakes
- You will finish your homework in a fraction of the time
- You will improve test scores and grade
- You can learn at your own pace at your own time

Manometer

Force on Plane Area

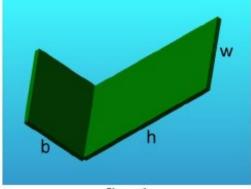
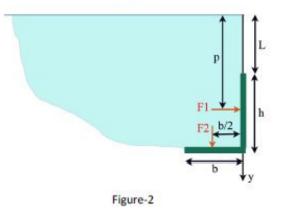
Force on Plane Area

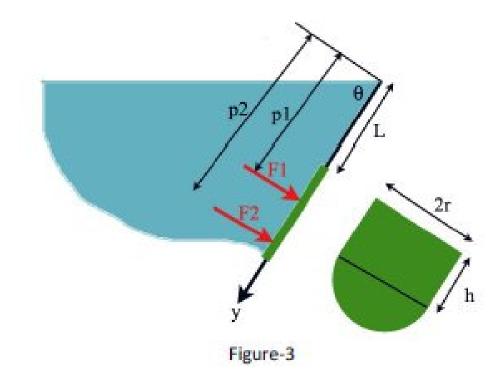
Force on Plane Area help

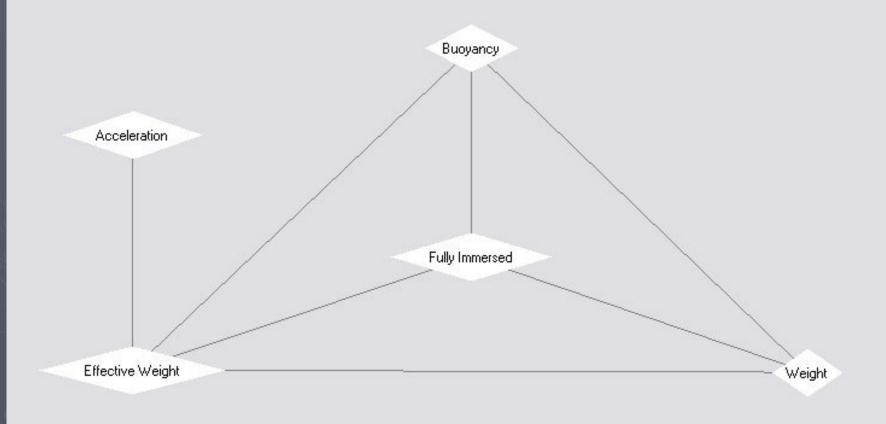
Force on Composite Plane Areas

Problem-1

The gate of Figure-1 is immersed in a fluid as shown in Figure-2. This gate is analyzed as a composite area consisting of two flat, rectangular gates.

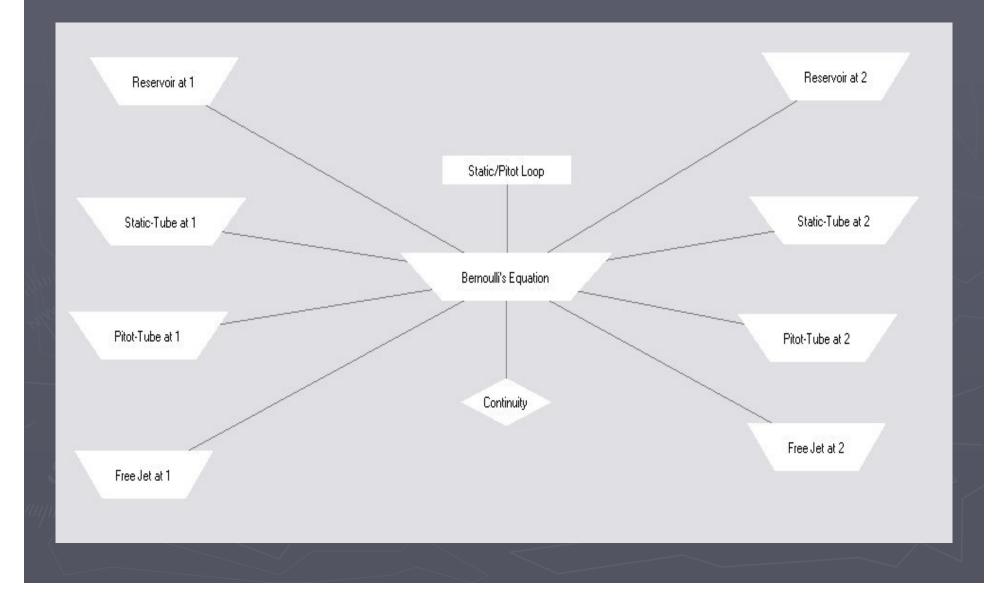




Figure-1


Force on Plane Area *help*

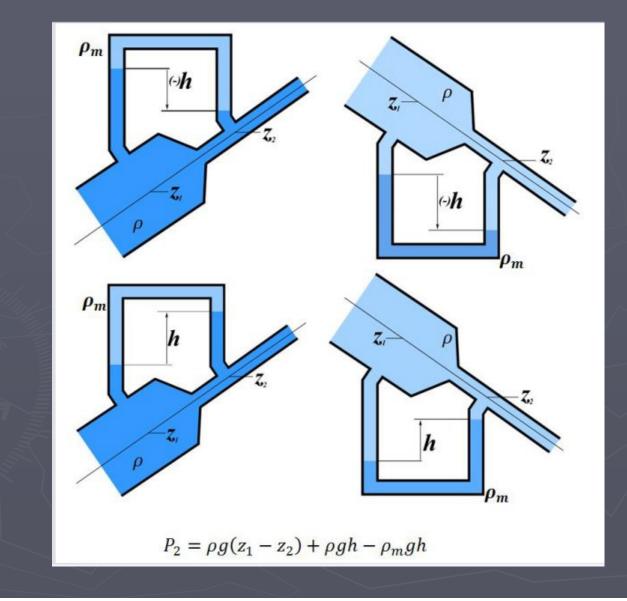
Problem-2

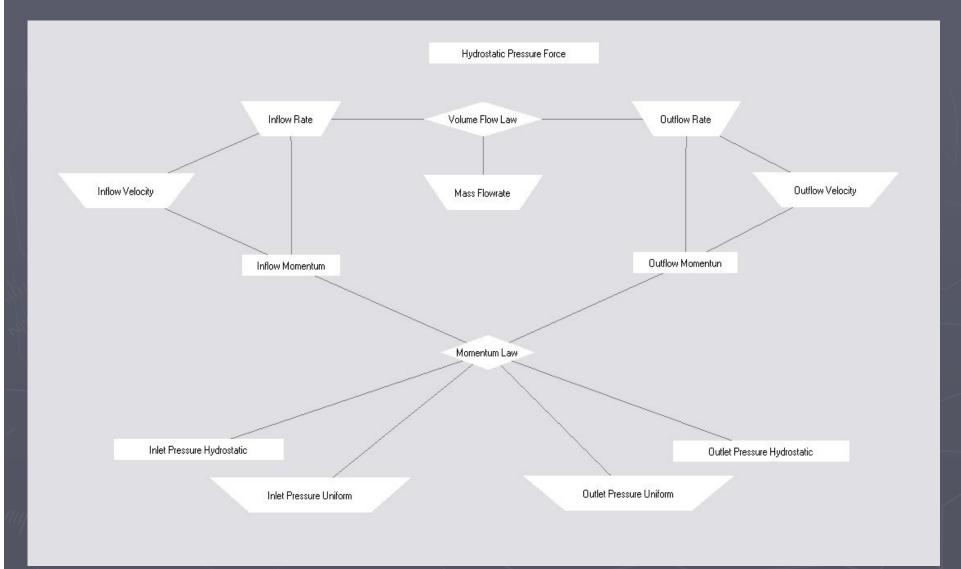
The gate of Figure-3 is immersed in a fluid. This gate is analyzed as a composite area consisting of one rectangular gate and a semi-circular gate.


Buoyancy Concept Map

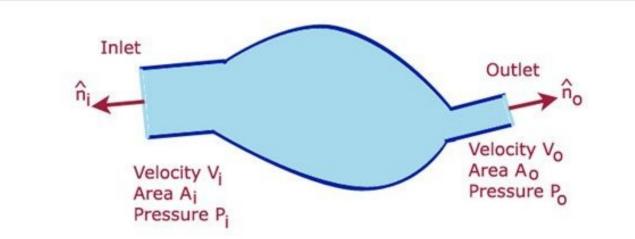
Buoyancy Concept Map - Variables

Accept Changes (Enter) Discard Changes (Esc)	Add Other Variables Basic
KNOWN variables Check all the variables you know.	DESIRED variables Check the one variable you need.
Acceleration - a	O Acceleration - a
Acceleration Gravity - g	O Acceleration Gravity - g
Buoyancy Force - F_Buoy	O Buoyancy Force - F_Buoy
] Sp. Weight Body - gamma_body	🔿 Sp. Weight Body - gamma_body
Sp. Weight Fluid - gamma_fluid	🔿 Sp. Weight Fluid - gamma_fluid
Vol. Body - V_body	🔿 Vol. Body - V_body
] Vol. Displaced Fluid - V_disp	🔿 Vol. Displaced Fluid - V_disp
] Weight Body - W_body	○ Weight Body - W_body
Weight Effective - W_eff	○ Weight Effective - W_eff


Bernoulli Eqn. Concept Map

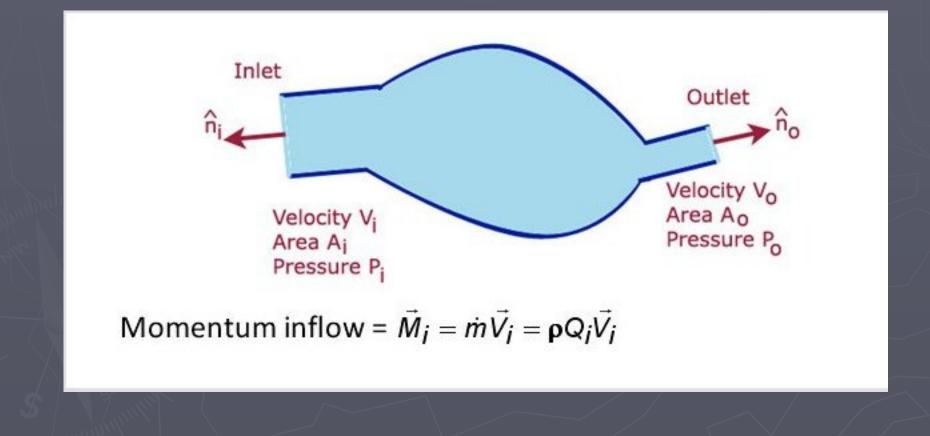

Bernoulli Concept Map - Variables

Accept Changes (Enter) Discard Changes (Esc)	Add Other Variables Basic
KNOWN variables Check all the variables you know.	DESIRED variables Check the one variable you need.
] Altitude-1 - Alt1	O Altitude-1 - Alt1
Altitude-2 - Alt2	O Altitude-2 - Alt2
Area-1 - A1	🔿 Area-1 - A1
Area2 - A2	🔿 Area2 - A2
] Density-rho	O Density - rho
] Gravity - g	◯ Gravity-g
] manometer deflection - H_man	O manometer deflection - H_man
] manometer density - rho_m	🔘 manometer density - rho_m
Pressure-1 - Pr1	O Pressure-1 - Pr1
] Pressure-2 - Pr2	O Pressure-2 - Pr2
] Total Head -1 - H1	🔿 Total Head -1 - H1
] Total Head-2 - H2	🔿 Total Head-2 - H2
] Velocity-1 - Vel1	◯ Velocity-1 - Vel1
Velocity-2 - Vel2	O Velocity-2 - Vel2

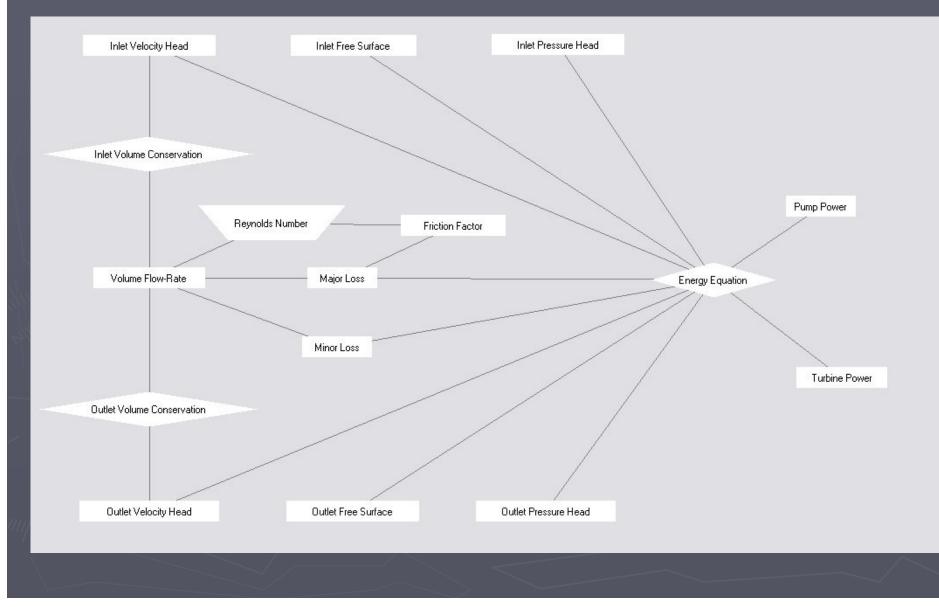

Bernoulli Concept Map - help

Momentum – Concept Map

Momentum Concept Map help


Weight of fluid = $\vec{W} = W_X \hat{x} + W_Y \hat{y}$

Force from pipes, walls, surfaces in contact with the fluid = $\vec{F} = F_X \hat{x} + F_Y \hat{y}$


Momentum Equation:

 $\vec{M}_i + \vec{P}_i + \vec{P}_o + \vec{W} + \vec{F} = \vec{M}_o$

Momentum Concept Map help

Energy Concept Map

Energy Concept Map help

Inlet velocity head = H_{Vi} Inlet pressure head = H_{Pi} Inlet altitude = H_i Major Head Loss = H_{Major} Minor Head Loss = H_{Minor} Pump Head = H_{Pump} Turbine Heed = H_{Turb} Outlet velocity head = H_{Vo} Outlet pressure head = H_{Po} Outlet altitude = H_o Energy Equation:

 $H_{Vi} + H_{Pi} + H_i - H_{Major} - H_{Minor} + H_{Pump} - H_{Turb}$ $= H_{Vo} + H_{Po} + H_0$

Pipe Flow – Iterative Solution

🖳 Pipe-Flow: Diameter Unknown		
Pipe-Flow: Diameter unknown problems		
Density Length of pipe Gra	vity Calculator	
Viscosity Volume flowrate Ma	jor Head-Loss	
Begin calculation with a guessed friction factor = 0.02		
Find D $D = \left(\frac{8fLQ^2}{\pi^2 gH_{major}}\right)^{1/5}$	Find Velocity $V = \frac{4Q}{\pi D^2}$	
GO	GO	
Iterate in loop until convergence.		
Find Friction Factor	Find Reynolds Number	
f	_{Po} ρVD	
$f = \frac{0.25}{\left[0.758912 - 0.9\log_{10}(Re)\right]^2}$	$Re = \frac{\rho VD}{\mu}$	
GO	GO	

Pipe Flow – Iterative Solution

🖳 Pipe-Flow: Diameter Unknown		
Pipe-Flow: Flowrate unknown problems		
Density Length of pipe Gravi	ty Calculator	
Viscosity Diameter Majo	r Head-Loss Start	
Begin calculation with a guessed friction factor = 0.02		
Find Q $Q = \left(\frac{\pi^2 g H_{major} D^5}{8 f L}\right)^{1/2}$ GO	Find Velocity $V = \frac{4Q}{\pi D^2}$ GO	
Iterate in loop until convergence.		
- Find Friction Factor	Find Reynolds Number	
$f = \frac{0.25}{\left[0.758912 - 0.9\log_{10}(Re)\right]^2}$	$Re = \frac{\rho VD}{\mu}$	
GO	GO	

Dimensional Analysis

🖳 Buckingham PI - Theorem	
BUCKINGHAM PI-THEO	REM MLT
⊙ M-L-T O F-L-T OK	Repeat - 1
How many variables? Less than or equal to 7 and greater than 3	Repeat - 2 Enter dimensions of the repeating
5 ОК	Repeat - 3
M/F - Check Does M appear in ANY of the variables ?	Procedure
	Help Why some
L - Check Does L appear in ANY of the variables ? • Yes O No	combinations of repeating variables do not work
T - Check	Close
Does T appear in ANY of the variables? ⊙ Yes ○ No	
ОК	
YOU NEED 3 REPEATING VARIBLES	
YOU WILL GET 2 PI - VARIABLES	

Dimensional Analysis help

Why Some Combinations of Repeating Variables Do Not Work

A set of repeating variables cannot be used to non-dimensionalize other variables when – two or more variables in the set can form non-dimensional groups among themselves.

Example-1

A set of repeating variables contain a length (D), an angular velocity (ω), and a velocity (V).

$$D := [L] \\ \omega := [T^{-1}] \\ V := [LT^{-1}]$$

These three variables can be combined into a dimensionless group $\Pi = D\omega/V$

Therefore, the set (D, ω, V) is unsuitable as a set of repeating variables.

Example-2

A set of repeating variables contain a pressure (p), a density (ρ) , and a velocity (V).

$$p := [ML^{-1} T^{-2}]$$

$$\rho := [ML^{-3}]$$

$$V := [LT^{-1}]$$

These three variables can be combined into a dimensionless group $\Pi = \rho V^2 / p$ Therefore, the set (p, ρ, V) is unsuitable as a set of repeating variables.