January 25th 2012

ClickSlide White Paper v.1.1

[image: image1.jpg]
White Paper: 
The ClickSlide Solution
Legal Notice

This document is produced by ClickSlide Limited and is the Sole copyright of the Company. Copyright in any application disclosed or created shall be deemed to have been created under the terms of the Copyright, Designs and Patents Act 1988 and shall be vested in ClickSlide Limited as Producer within the meaning of the Act.  
Any references to copyright and product of other companies are with the permission of the company whether explicitly or implied by their market activities.  
The document is produced for limited circulation and any reproduction of this document through any media requires the explicit approval of ClickSlide Limited.  Distribution of this document is limited to selected organisations and persons and distribution or possession of this document without appropriate authority is an offence which may result in legal proceeding and a claim for damages by and at the sole discretion of ClickSlide Limited

1. The ClickSlide Breakthrough
ClickSlide’s fresh approach is to automate the process of adding GUI (Graphic User Interface) components to the growing number of APIs or Datasets being made available to developers today. As developers create and connect GUIs to APIs by using our system, ClickSlide will begin to learn which GUI component is most suited to a particular API call. 
In the current iteration, anyone with an Auth API service can integrate their services into the ClickSlide platform with little effort, using a simple XML formatted language we call Natural Machine Language (NML).  ClickSlide will be a Graphic Interface for all API services and, with a point-and-click editor, software created on ClickSlide can easily be updated for new services as they are added.
Cross-platform compilation is the term given to the compiling of software from a single code base that can then be deployed to multiple platforms or operating systems. To achieve successful cross-platform compilation, it is critical that the machine code produced meets the requirements of the targeted system. This can be a challenging task because of the differences between the existing platform software, hardware and CPU bits. These problems are further complicated when producing games, because the cross-platform compiler must also account for graphics processing. 
The set of devices running a specific platform (iOS, Android, etc.) has multiple operating system versions, different hardware, and different screen sizes. This raises a problem for which two common solutions have emerged.  The first solution is to embed a web browser in a native wrapper which allows developers to program applications using HTML, Javascript, and CSS. The second solution is to use a cross-compilation IDE that allow developers to compile apps to multiple platforms and devices. The former is more scalable and easier to use, while the latter delivers to fewer platforms, but produces higher performance applications.
ClickSlide intends to solve this cross-platform compilation trade-off by using interactive machine learning to learn from developer actions; it will then assist them by providing recommendations on how their application should compile to a target platform. ClickSlide consists of three parts:
1. Point and Click UI
2. Device API wrapper
3. A learning machine.
The point and click UI will allow developers to create visual relationships between APIs and GUI components. Developers will configure their app and its connection to APIs (device and remote) directly from ClickSlide’s point and click UI. 
The device API wrapper is a custom lightweight, performance optimized wrapper which connects directly to device and remote APIs. The wrapper scales easily because it uses Natural Machine Language (NML) to adapt to APIs as they evolve and configure native GUI controls. 
The learning machine will use a customized Bayesian method to target developer configurations for standardization, and to evaluate application logs. These two streams of evidence allow the learning machine to estimate accurately its own confidence level that a targeted configuration should be released. 
2. ClickSlide in Context
Mobile and desktop software are created with a set of local APIs which perform a series of tasks: complex computation, delivery of device capabilities, algorithms, artificial intelligence and graphic acceleration.  Local APIs connect software with hardware. Local software then accesses web-based APIs to connect web services to other web-based APIs. Through this method data can be accessed by external service providers.  Once created, web-based APIs can be scaled in their range of functions and uses by making them available to developers. Developers in turn use web-based APIs to develop a range of functions for websites and mobile software applications.
User access to web-based APIs allows groups or individuals to have a meaningful interaction with data, and because of this they have become a popular way of distributing services. Web-based companies like Salesforce and Amazon have paved the way for consumer-oriented APIs and companies like Facebook, Skype and Foursquare have introduced social, communication and location-oriented APIs into the mainstream. This trend has been made popular by rapidly advancing smartphone innovations and these innovations have given web-based APIs a portable point of entry.  This has been an important development because it has given individuals ready access to the vast range of data and functions APIs can offer.
API popularity among developers has created a change in the tech industry whereby online services have evolved from strictly information and commerce into services which address a range of social and physical data collection.  The most secure and efficient way of delivering new services across all connected devices has been through the invention and adaptation of web-based APIs.  Their importance has become increasingly clear over the past twelve months.
Programmable Web is a popular resource for the most commonly used web-based APIs. In the 6 months from January 13th to July 23rd, Programable Web added 1825 new APIs to its rapidly growing database of 6,621 APIs (January 16th 2012). 2012 will see an explosion of new web-based APIs with continued exponential growth. This increasingly vast API universe and the ability to mix and match functionality has given birth to what is commonly known as a Mashup.
Mashups are a way for developers to cherry-pick useful functions from web-based API services. This is because API functions are features of a total software package.  For example, Twilio offers telephone services over the web, but these APIs are not meaningful until they are combined with location-based services and customer relationship software. Twilio is a very popular API service for developers, but it only represents a fraction of the kind of APIs that are currently available and might become available in the future.
Web-based APIs also mean a trend in software creation away from the standard software development model. This trend became more apparent when companies like Kinvey, Parse and StackMob moved the database layer of software design into a web-based API service. 
These trends lead us to conclude that eventually all software development will rely less on local APIs and more on web-based APIs. When this happens, all software will be constructed using a combination of functionality delivered via web-based APIs. Eventually, developers will no longer need to build bespoke software.  Instead, engineers will program new software functionality into a cloud computer and sell this functionality through an API.  With this ecosystem in place, multiple APIs can be combined to create new combinations of useful software.
Evidence of this interconnected software development paradigm can be found on Apple's iCloud service. Currently, this service only supports file contents and device settings between multiple iOS devices, but it is reasonable to infer that Apple has every intention of supporting its own system so that it does a great deal more than it does at present.  However, there is no logical reason why this service approach should be restricted to Apple.  And that is where ClickSlide comes in.
ClickSlide is a universal platform to connect APIs and combine them into meaningful software. Without programming, it can accelerate these trends in software development. With ClickSlide, developers can start writing meaningful code again. Marketers can deliver the services they need with the click of a button and, at a vastly reduced cost, businesses can iterate ideas over and over until they are useful.  The implications of this are significant.  The current marketplace for APIs is expanding at a great rate, even though at present it is only open to those who can afford to enter it.  A future powered by the ClickSlide platform will be an open market where the cost of entry is minimal.  Not only will it allow developers and enterprise level businesses to compete but it will also give that power to SMEs, sole traders and consumers.  The size of such a market globally is hard to calculate with any accuracy.  The only certainty is that it will be massive.
3. The ClickSlide Solution
Sending data from an application is a common task. An application can be programmed to output any data format: C++ to XML, Java to JSON, C# to SOAP, PHP to XML-RPC, etc. Using a non-standard data format makes the task even easier. 
However, there are many questions that arise while planning the task of importing data from a remote source into an application: What is the data format? Does it follow standards exactly? Is there a simple way to change its format? If not, do I need to write a handler for that? The list goes on... Interoperability has been a problem since the invention of the computer. When applications moved into the cloud, the problem grew exponentially (browsers, mobile browsers, mobile apps, mobile OS, etc.).
Microsoft tried to solve this problem with SOAP (Simple Object Access Protocol), which became a W3C standard. Regardless of its standardisation, developers never implemented it exactly to the standard specification because doing so was difficult. The SOAP protocol was eventually replaced by the REST (Representational State Transfer) protocol. The REST protocol grew in popularity because it removed the need to define functions and parameters with a schema document.  REST allows developers to identify remote application resources with HTTP URLs using GET, PUT, POST, and DELETE verbs to execute on those resources. Data from the local application has to meet the requirements of the remote application’s API. Developers create custom code for user authentication and data retrieval. They also design their applications to handle the data type coming from the server, which may or may not follow a popular standard. This method still requires developers to deal with the same interoperability problems. They have to follow the rules of the remote application and since all remote applications have different rules, it’s nearly impossible to create a single code base for all remote communication.
Simple data formats like JSON & XML, combined with servers that follow the REST protocol, have helped ease the pain of developing applications that can communicate with multiple remote applications. Once developers started to use this mix of technology, the world of mash-ups and web-based APIs started to grow rapidly. These aged technologies (REST, JSON, XML, and HTTP) combined to form a world of interconnected services over the internet. 
The problem of cross-platform display differences & usability implementations has pushed developers to target a single platform. Many companies have tried to build universal tools for developers that allow them to build once and deploy to all platforms. The complexity of an ever-growing number of operating systems, the operating system versions and OEM modified versions fragment the market to the point where cross-compilation becomes a futile task. Many cross-compilers have gone out of business, while others continue to struggle to deliver applications to 2 or 3 different operating systems. The best of breed in this class, Mono and PhoneGap, have managed this task more thoroughly than any of their predecessors and competitors. Still, they only fully support 4 platforms. As the number of platforms they support grows, so does their code base, making their software difficult to scale.
We are left with 2 major problems: 
1. Handling incoming data, executing on it, and making it meaningful without needing custom code, is nearly impossible.
ClickSlide does this by providing a Taught Data Translator (TDT) to developers. It is a point-and-click interface that allows them to place data in designated containers for display. ClickSlide uses a skeleton component architecture which developers fill with meaningful data by building visual relationships between the components and the incoming data. Generality is maintained by teaching the TDT what the data means, instead of assuming the data follows a standardised format. ClickSlide relies on learning algorithms instead of code customisations to scale the TDT across all data types. 
In order to compile to native applications, ClickSlide will use the TDT along with a Taught Platform Compiler (TPC). The TPC will allow developers to teach ClickSlide how it should connect to device APIs for a targeted platform. Developers will register device APIs and configure the connections directly from ClickSlide. Those device APIs then become available for use in the developer’s application.  The TPC will learn from developer configurations and adapt to deliver the ideal implementations for every platform.
2. Screen sizes and resolutions are fragmented, making it difficult to maintain a GUI across all platforms automatically.
ClickSlide is a lightweight wireframe wrapper that connects native usability and performance to any API. Applications built with ClickSlide can scale and remain functional across all devices. Even in less capable WAP browsers, ClickSlide applications can function as basic websites.
ClickSlide automates the following processes for developers:
1. Remote communications
2. Data handling
3. REST API creation
4. GUI creation
5. Cross platform deployment. 
Main Sources
1.    http://www.youtube.com/watch?v=HbUmYflN2fU
2.    http://patrick.maher1.net/preprints/bp.pdf
3.    http://broadcast.oreilly.com/2011/06/the-good-the-bad-the-ugly-of-rest-apis.html
4.    http://msdn.microsoft.com/en-us/library/ms995800.aspx (SOAP)
5.    http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm (REST)
Other Sources
http://www.cs.fsu.edu/~engelen/cpcpaper06.pdf
http://www.emerson.emory.edu/services/gcc/html/Cross-compilation.html
http://radar.oreilly.com/2009/12/the-best-and-the-worst-tech-of.html
4. The Future of ClickSlide
On September 9, 2010 Apple changed its App Store review guidelines to allow virtual machines, cross-compilers, and Flash to iPhone apps with one exception. The apps produced must not download code at run time. Injecting code into an application at run time is known as Just in Time (JIT) compilation. JIT compilation allows an application to modify itself at run time. In a closed environment like Apple, allowing JIT compilation would open many security issues because developers could execute malicious code on the device. Because of this, the application update lifecycle for an iPhone app is usually: 
1. Update code base
2. Submit app to Apple for Review
3. Wait for approval
4. Updated app goes live
One thing Apps do well is consume data. By connecting apps to APIs developers are able to keep content up to date. They can use push notifications to instruct their users to refresh content, or to have their app do it automatically. Apple allows the download of many popular data formats (XML, JSON, PJSON, XML-RPC, etc.). It is a common application task to download data documents to keep content fresh. The typical content update lifecycle for an iPhone app is:
1. Update content
2. Push update to users
3. Updated content goes live
Each native app produced by ClickSlide is an embedded version of ClickSlide. ClickSlide is a code-less environment so no code is downloaded or executed at run time. ClickSlide’s skeleton architecture allows it to be configured Just In Time using a Natural Machine Language (NML) document. NML documents are simple text files (XML) that can be securely downloaded to any device. There is nothing executable in a NML document so it brings no harm to the device it is stored on. NML files can be safely downloaded and run in a ClickSlide app at any time. Since NML is a data format allowed by Apple, ClickSlide apps can be updated without having to go through the App Review process. Developers will be able to use push notifications to tell their customers that updates are available or to have ClickSlide automatically update the app the next time it opens. With ClickSlide, the application update lifecycle for any mobile app is:
1. Use point and click UI to update app configuration
2. Push update to users
1. Updated app goes live
5. ClickSlide Development Milestones
Prototype

In its current iteration ClickSlide offers a developer the ability to publish web-based software (web-apps) using an expressive XML language. Through these web-apps, a developer can create and manipulate web content (images, text, video, audio, etc). The web content is stored in the ClickSlide Content Database.  All the manipulation of the web-app is managed directly through the point-and-click GUI. 

ClickSlide web-apps also have the ability to connect to remote content sources (APIs). In order to create a web-app using an API, a developer must create two files and one database entry. The first is an API Definition file which describes the functionality of the API to ClickSlide. The second is an API Mapping file which describes how ClickSlide should parse and display the API data. Both files use an expressive XML language that is very simple to write. 

A database entry in the API Authentication database must be made in order for the developer to authenticate a user account with the API. All APIs require the developer to register and receive a developer’s access code. This access code must then be encrypted and verified before ClickSlide can receive data from the API. Currently, ClickSlide can authenticate OAuth 1, OAuth 2, and Basic Auth APIs. 

Custom façades are used in our backend to handle file payloads for API uploads. Façades are custom PHP files that handle the sending of files to APIs during page creation/editing. 

© Copyright 2012 ClickSlide Ltd – All Rights Reserved
1 of 1

