
The Encryption Wizard for Oracle

API Library Reference

For Oracle 10g, 11g and 12c Databases

Version 8

Copyright 2003-2013 Relational Database Consultants, Inc.

All Rights Reserved.

The Encryption Wizard For Oracle
API Library Reference

Copyright 2003-2013 Relational Database Consultants, Inc.

The Encryption Wizard for Oracle

API Library Reference

Relational Database Consultants, Inc. (RDC)
12021 Wilshire Blvd

Suite 108
Los Angeles, CA. 90025

310-281-1915

www.relationalwizards.com

Restricted Rights Notice

Copyright 2003. All Rights Reserved. No portion of this document may be reproduced, recorded, transmitted, or copied
without permission from the copyright holders. Information in this document is subject to change without notice.

Trademark Notice

All trademarks in this document belong to their respective holders.

Relational Database Consultants, Inc.
www.relationalwizards.com

Copyright 2003-2013.

http://www.relationalwizards.com/

The Encryption Wizard For Oracle
API Library Reference

Copyright 2003-2013 Relational Database Consultants, Inc.

API Library Reference
Table of Contents

Section One - Object Management

EncryptData
DecryptData
CreateDecryptedView
DropDecryptedView
SetDefaultPassword
InsertRestrictedUser
SetRestrictedPassword
DeleteRestrictedUser
SetAuditing
DeleteAuditing
SetAdminPassword
Login
ChangeRollbackSegment
BackupKeys
RestoreKeys
RestoreColumn
SetDefaultMask
GetDefaultMask
Removem
CountEncryptedColumns
CountAuditLog
ReKeyData
IsObjectAudited
IsDecryptedView
EncryptNullData
IsRecovery
GetVersionNo
GetLastErrorMsg

Section Two - Runtime Methods

EncryptData
DecryptData
GetColumnSeq
Login
GetLastErrorMsg

Relational Database Consultants, Inc.
www.relationalwizards.com

Copyright 2003-2013.

The Encryption Wizard For Oracle
API Library Reference

Copyright 2003-2013 Relational Database Consultants, Inc.

Table of Contents (continued)

Section Three – HSM Managerment

Initialize
GetParameter
GetJavaParam
ChangeParam

Relational Database Consultants, Inc.
www.relationalwizards.com

Copyright 2003-2013.

The Encryption Wizard For Oracle
API Library Reference

Copyright 2003-2013 Relational Database Consultants, Inc.

Section One

Object Management

The Encryption Wizard for Oracle provides a rich library of Object Management methods
that can be invoked from SQL*Plus or directly through any interface such as JDBC that
connects to Oracle and can call Oracle stored procedures and packages.

The Object Management API is only to be used for Encryption Wizard Administrators.
End-user applications that need to access encrypted data should interface through the
Runtime Methods as discussed in the next section. You must be connected to the Oracle
RDBMS as rdc_encrypt_user to use the object management methods in this section.

The Object Management API allows you to Encrypt and Decrypt data within your Oracle
RDBMS. Along with basic encryption functions, the Object Management API provides
easy methods to create Runtime Passwords, Decrypted Views, Restricted User Lists, and
define audit trails against given sets or subsets or your encrypted data.

It is important to read the Encryption Wizard User Manual before attempting to use any
of these API calls. In the User Manual, the concepts of the Encryption Wizard and its
underlying API are discussed in more general terms.

If you plan to invoke the Encryption Wizard API from SQL*Plus, it is recommended that
you issue this command to start each session:

SQL>Set ServerOutput On

In this way you can view the informational messages of the Encryption Wizard packages
if there is an error or warning. All Encryption Wizard errors and warnings are populated
in the table Internal_Audit and can be queried using SQL. If you plan on using the
Encryption Wizard API on a regular basis, it is helpful to create a series of .sql scripts to
run the library commands you plan to use.

Relational Database Consultants, Inc.
www.relationalwizards.com

Copyright 2003-2013.

http://www.relationalwizards.com/ora_encryption/EncryptionWizard.pdf

The Encryption Wizard For Oracle
API Library Reference

Copyright 2003-2013 Relational Database Consultants, Inc.

1. EncryptData
EncryptData is the core method that is used to encrypt your database data. EncryptData
will encrypt every row of a given schema, table or column based on the key value
(password) that you pass into the method. If you do not provide a key-value, one will be
generated for you. If you are using an administrative password, EncrpytData will not
work without first calling the login method.

Along with scope of encryption, defined at the schema, table or column level, the method
EncrpytData will encrypt table data is based on an encryption type and an optional flag to
add salt. Valid encryption types can be found querying the table valid_encryption_types.
EncryptData allows you to specify a commit point. The commit point specifies the
number of rows to be encrypted before each commit is issued to the database.

The method CountEncryptedColumns should be called before and after a call to this
method to monitor the current state of encryption. EncryptData only returns a message if
there is a fatal error.

Specification:

Procedure EncryptData
(

KeyValue In Varchar2,
TableOwner In Varchar2,
TableName In Varchar2 Default Null,
ColumnName In Varchar2 Default Null,
EncryptionType In Varchar2 Default DefaultEncryptionType,
SaltFlag In Boolean Default True,
CommitPoint In Number Default DefaultCommitPoint

);

Examples:

/*Encrypt complete schema SCOTT using DES (default) with a generated key*/
SQL>exec RDC_Encrypt_Object.EncryptData(Null,‘SCOTT’);

/*Encrypt complete table SCOTT.EMP using AES-256 with the key “Hello World”* with Salt*/
SQL>exec RDC_Encrypt_Object.EncryptData(‘Hello World’, ‘SCOTT’, ‘EMP’, NULL,’AES 256-
Bit’,true);

/*Encrypt table SCOTT.EMP using AES256 with no salt, issuing a commit every 64K records*/
SQL>exec RDC_Encrypt_Object.EncryptData(Null, ‘SCOTT’,’EMP’,NULL,’AES 256-Bit’, False, 64000)

/*Encrypt column SCOTT.EMP.ENAME and show encrypted column count before and after*/
SQL>Begin
dbms_output.put_line(‘Before: ‘||RDC_Encrypt_Util.CountEncryptedColumns);
RDC_Encrypt_Object.EncryptData(Null,‘SCOTT’,’EMP’, 'ENAME');
dbms_output.put_line(‘After: ‘||RDC_Encrypt_Util.CountEncryptedColumns);
End;

Relational Database Consultants, Inc.
www.relationalwizards.com

Copyright 2003-2013.

The Encryption Wizard For Oracle
API Library Reference

Copyright 2003-2013 Relational Database Consultants, Inc.

2. DecryptData
DecryptData is the core method utilized to decrypt your encrypted table data and update
it to its unencrypted state. As with encryption, DecryptData can operate on a schema,
table, or a given column. You can also specify a commit-point as with the EncryptData
method. If you are using an administrative password you will need to call the method
login before calling DecryptData.

The method CountEncryptedColumns should be called before and after a call to this
method to monitor the current state of encryption. DecryptData only returns a message if
there is a fatal error.

Specification:

Procedure DecryptData
(

TableOwner In Varchar2 Default Null,
TableName In Varchar2 Default Null,
ColumnName In Varchar2 Default Null,
CommitPoint In Number Default Null

);

Examples:

/*Decrypt complete schema SCOTT*/
SQL>exec RDC_Encrypt_Object.DecryptData(‘SCOTT’);

/*Decrypt complete table SCOTT.EMP*/
SQL>exec RDC_Encrypt_Object.DecryptData(‘SCOTT’, ‘EMP’);

/*Decrypt complete table SCOTT.EMP while issuing commit every 2048 records*/
SQL>exec RDC_Encrypt_Object.DecryptData(‘SCOTT’,’EMP’,NULL, 2048);

/*Decrypt complete table SCOTT.EMP and print encrypted column count before and after decryption call*/
SQL>Begin
dbms_output.put_line(‘Before: ‘||RDC_Encrypt_Util.CountEncryptedColumns);
RDC_Encrypt_Object.DecryptData(‘SCOTT’,’EMP’);
dbms_output.put_line(‘After: ‘||RDC_Encrypt_Util.CountEncryptedColumns);
End;
/

Relational Database Consultants, Inc.
www.relationalwizards.com

Copyright 2003-2013.

The Encryption Wizard For Oracle
API Library Reference

Copyright 2003-2013 Relational Database Consultants, Inc.

3. CreateDecryptedView
This method is used to create or recreate a decrypted view against a single base table.
Applications should use decrypted views for transparent data encryption. Typically base
tables are renamed or synonyms changed, so that applications read and write data to
decrypted views and not the underlying encrypted tables.

CreateDecryptedView can be used either to create a new view against an encrypted base
table or to modify an existing decrypted view name and/or owner. An encrypted base
table can have only one decrypted view at a given point in time.

If the UpdateFlag is set to FALSE, your decrypted view will be a read-only view. The
default value for UpdateFlag is TRUE, which allows DDL against the decrypted view as
if it was a table.

For updateable decrypted views (UpdateFlag=TRUE) the Encryption Wizard creates an
instead-of-trigger to process SQL update, insert and delete statements. If there is a
primary key on the table being decrypted, the instead-of-trigger will use this key to
process DDL; otherwise a rowid column will be added to the decrypted view.

To prevent CreateDecryptedView from using primary primary key values, update the
column use_rowid_for_views to 'X in the table rdc_encrypt_license. In this case, a rowid
column will be added to the decrypted view regardless of the existence of a primary key.

Text of the decrypted view trigger can be found in the table encrypted_table, stored in the
column trigger_text.

Specification:

Procedure CreateDecryptedView
(

TableOwner In Varchar2,
TableName In Varchar2,
ViewOwner In Varchar2 Default Null,
ViewName In Varchar2 Default Null,
UpdateFlag In Boolean Default True,
OverWrite In Boolean Default True

);

Examples

/*Creates an updateable decrypted view named V_EMP in the schema SCOTT*/
SQL>exec RDC_Encrypt_Object.CreateDecryptedView(‘SCOTT’, ‘EMP’,’SCOTT’,’V_EMP’);

/*Creates a read-only decrypted view named V_EMP in the schema SCOTT*/
SQL>exec RDC_Encrypt_Object.CreateDecryptedView(‘SCOTT’, ‘EMP’,’SCOTT’,’V_EMP’, False);

Relational Database Consultants, Inc.
www.relationalwizards.com

Copyright 2003-2013.

The Encryption Wizard For Oracle
API Library Reference

Copyright 2003-2013 Relational Database Consultants, Inc.

Relational Database Consultants, Inc.
www.relationalwizards.com

Copyright 2003-2013.

The Encryption Wizard For Oracle
API Library Reference

Copyright 2003-2013 Relational Database Consultants, Inc.

4. DropDecryptedView
DropDecryptedView is used to drop an existing updateable or read-only decrypted view
created by the Encryption Wizard. This method should always be called after you
decrypt a table, since the remaining decrypted view will be invalid after your table data is
returned to its original state.

To drop a decrypted view, you do not need to remember the view name, simply the base
table that it was built against. To find a View Name for a given encrypted base table,
query the table encrypted_table.

Specification

Procedure DropDecryptedView
(

TableOwner In Varchar2,
TableName In Varchar2,
OverWriteFlag In Boolean Default True

);

Examples

/* drops any decrypted view associated with the base table SCOTT.EMP */
SQL>exec RDC_Encrypt_Object.DropDecryptedView(‘SCOTT’, ‘EMP’);

Relational Database Consultants, Inc.
www.relationalwizards.com

Copyright 2003-2013.

The Encryption Wizard For Oracle
API Library Reference

Copyright 2003-2013 Relational Database Consultants, Inc.

5. SetDefaultPassword
This method is used to assign a Default Runtime Password for a database object as
described in the Encryption Wizard User Manual. A user has access to decryption and
encryption operations based on their Oracle database grants and roles. If a Default
Runtime Password is assigned, then an end-user must authenticate this password at
runtime through a package call to rdc_encrypt_runtime.login as discussed in the next
chapter.

A Default Runtime Password can be assigned for a complete schema, table, or column.
To remove a runtime password, SetDefaultPassword is called with a null password.
RDC_Encrypt_User authenticates through the administration password and not this
method. The Default Runtime Password can be over-ridden by a User-Specific Runtime
Password assigned to a given user through a method call to SetRestrictedPassword.

Specification

Procedure SetDefaultPassword
(

Password In Varchar2,
TableOwner In Varchar2,
TableName In Varchar2 Default Null,
ColumnName In Varchar2 Default Null,
NoCommit In Boolean Default False

);

Examples

/*Requires login to decrypt/encrypt objects in the schema SCOTT. The password is TIGER*/
SQL>exec RDC_Encrypt_Object.SetDefaultPassword(’TIGER’, ‘SCOTT’);

/*Removes the above Runtime Password*/
SQL>exec RDC_Encrypt_Object.SetDefaultPassword(NULL,’SCOTT’);

/*Resets the above Runtime Password, but only requires it for a single column*/
SQL>exec RDC_Encrypt_Object.SetDefaultPassword(‘TIGER’,’SCOTT’,’EMP’,’SAL’);

Relational Database Consultants, Inc.
www.relationalwizards.com

Copyright 2003-2013.

The Encryption Wizard For Oracle
API Library Reference

Copyright 2003-2013 Relational Database Consultants, Inc.

6. InsertRestrictedUser
This method is used to create or modify a Restricted User List as described in the
Encryption Wizard User Manual. By default a user has access to decryption and
encryption operations based on their Oracle database grants and roles.

Restricted User Lists grant users access to a given encrypted schema, table, or column
and blocks all other users not listed. Once all users are deleted from a Restricted User
List, the objects of that list are not restricted and again can be decrypted or encrypted by
any Oracle user with access to the underlying database object.

The three valid authorization types that are granted to a user for a given database object
are full privileges (read/write) ‘E’, encryption (write-only) 'e', or decryption privileges
(read-only) ‘D’. Write-only authorizations, 'e', cannot be used in conjunction with
decrypted views.

Restricted users and their authorizations can be queried directly from the table
encrypted_column_user.

Specification

Procedure InsertRestrictedUser
(

TableOwner In Varchar2,
TableName In Varchar2,
ColumnName In Varchar2,
UserName In Varchar2,
AuthorizationType In Char,
NoCommit In Boolean Default False

);

Examples

/*Restricts access of SCOTT.EMP to the user SYSTEM*/
SQL>exec RDC_Encrypt_Object.InsertRestrictedUser(‘SCOTT’,’EMP’,NULL,’SYSTEM’,’E');

/*Restricts access of SCOTT.EMP.SAL to SYSTEM with only decryption (Read) privileges*/
SQL>exec RDC_Encrypt_Object.InsertRestrictedUser(‘SCOTT’,’EMP’,SAL,’SYSTEM’,’D’);

/*Restricts access of SCOTT.EMP.SAL to SYSTEM with only encryption (Write) privileges*/
SQL>exec RDC_Encrypt_Object.InsertRestrictedUser(‘SCOTT’,’EMP’,BONUS',’SYSTEM’,’e’);

Relational Database Consultants, Inc.
www.relationalwizards.com

Copyright 2003-2013.

The Encryption Wizard For Oracle
API Library Reference

Copyright 2003-2013 Relational Database Consultants, Inc.

7. SetRestrictedPassword
This method is used to assign a User-Specific Runtime Password to a user defined in a
Restricted User List as described in the Encryption Wizard User Manual. By default a
user has access to decryption and encryption operations based on their Oracle database
grants and roles if they appear on a restricted user list. If a Runtime Password is
assigned, then an end-user must authenticate this password at runtime through the
package call rdc_encrypt_runtime.login as discussed in the next chapter.

To remove a runtime password, SetRestrictedPassword must be called with a null
password. Of course, once a User or Restricted User List is removed, the runtime
password is also deleted. Only users on Restricted User Lists may be assigned runtime
passwords.

A User-Specific Runtime Password may be assigned to a given user for a complete
schema, a table, or a single column depending on the scope defined in this method call.
SetRestrictedPassword will override any Default Runtime Password assigned to a given
schema, table, or column – for the user specified in the method call. RDC_Encrypt_User
authenticates through the administration password and not this method.

Specification

Procedure SetRestrictedPassword
(

UserName In Varchar2,
Password In Varchar2,
TableOwner In Varchar2,
TableName In Varchar2 Default Null,
ColumnName In Varchar2 Default Null,
NoCommit In Boolean Default False

)

Examples

/*Requires SYSTEM to login to decrypt/encrypt the schema scott, with the password TIGER*/
SQL>exec RDC_Encrypt_Object.SetRestrictedPassword(‘SYSTEM’,’TIGER’,’SCOTT’);

/*Removes the above Runtime Password*/
SQL>exec RDC_Encrypt_Object.SetRestrictedPassword(‘SYSTEM’,NULL,’SCOTT’);

/*Resets the above Runtime Password, but only requires it for a single column*/
SQL>exec RDC_Encrypt_Object.SetRestrictedPassword(‘SYSTEM’,’TIGER’,’SCOTT’,’EMP’,’SAL’);

Relational Database Consultants, Inc.
www.relationalwizards.com

Copyright 2003-2013.

The Encryption Wizard For Oracle
API Library Reference

Copyright 2003-2013 Relational Database Consultants, Inc.

8. DeleteRestrictedUser

DeleteRestrictedUser is used to remove either one or all users from a Restricted User
List. This operation can be performed at the Schema, Table, or Column level. If a
Restricted User List is removed completely by specifying a NULL Username or if the last
user is removed from a Restricted User List, access to the given object will be granted
based only on database privileges.

Specification

Procedure DeleteRestrictedUser
(

TableOwner In Varchar2,
TableName In Varchar2 Default Null,
ColumnName In Varchar2 Default Null,
UserName In Varchar2 Default Null,
NoCommit In Boolean Default False

);

Examples

/*removes SYSTEM from the restricted user list for table SCOTT.EMP*/
SQL>exec RDC_Encrypt_Object.DeleteRestrictedUser(‘SCOTT’,’EMP’,NULL,’SYSTEM’);

/*removes restriction of SCOTT.EMP.SAL from SYSTEM */
SQL>exec RDC_Encrypt_Object.DeleteRestrictedUser(‘SCOTT’,’EMP’,’SAL’,’SYSTEM’);

/*removes all restricted lists from the schema SCOTT, thus allowing users to access encrypted data*/
SQL>exec RDC_Encrypt_Object.DeleteRestrictedUser(‘SCOTT’);

Relational Database Consultants, Inc.
www.relationalwizards.com

Copyright 2003-2013.

The Encryption Wizard For Oracle
API Library Reference

Copyright 2003-2013 Relational Database Consultants, Inc.

9. SetAudting
This method allows for session auditing to be specified for any encrypted schema, table,
or column. Auditing can be specified for actions of Encryption (E), Decryption (D), or
both (B). All session auditing records are inserted into the table encrypt_audit.

Specification

Procedure SetAuditing
(

TableOwner In Varchar2,
TableName In Varchar2,
ColumnName In Varchar2,
AuditType In Varchar2

);

/*Set session auditing to encryption (write) for all encrypted tables within the schema scott */
SQL>RDC_Encrypt_Util.SetAuditing(‘SCOTT’, NULL, NULL, ‘E’);

/*Set session auditing for all operations against the table SCOTT.EMP*/
SQL>RDC_Encrypt_Util.SetAuditing(‘SCOTT’,’EMP’,NULL,’B’);

/*Set session auditing for Decryption (read) for column EMP.SAL*/
SQL>RDC_Encrypt_Util.SetAuditing(‘SCOTT’,’EMP’,SAL,’D’);

Relational Database Consultants, Inc.
www.relationalwizards.com

Copyright 2003-2013.

The Encryption Wizard For Oracle
API Library Reference

Copyright 2003-2013 Relational Database Consultants, Inc.

10.DeleteAuditing
To turn-off auditing for a given schema, table, or column we call the method
DeleteAuditing. This method returns an integer representing the number of columns
successfully removed from auditing as a result of the function call.

Specification

Function DeleteAuditing
(

TableOwner In Varchar2,
TableName In Varchar2,
ColumnName In Varchar2

)
Return Number;

Examples

/*turns off auditing for all objects in the schema scott*/
SQL>exec dbms_output.put_line(RDC_Encrypt_Util.deleteauditing(‘SCOTT’));

/*turns off auditing for the table SCOTT.EMP*/
SQL>exec dbms_output.put_line(RDC_Encrypt_Util.deleteauditing(‘SCOTT’, ‘EMP’));

Relational Database Consultants, Inc.
www.relationalwizards.com

Copyright 2003-2013.

The Encryption Wizard For Oracle
API Library Reference

Copyright 2003-2013 Relational Database Consultants, Inc.

11.SetAdminPassword
The Administrative Password is used to prevent any Oracle user, even a DBA, from
unauthorized use of the Encryption Wizard. Once this password is set, users will need to
use the .login method before using any of the administrative methods. Runtime
decryption and encryption does not require this password, only administrative functions.

To set the administrative password, simply pass in a string to SetAdminPassword. If you
are already using an administrative password you will need to call the method login
before calling SetAdminPassword.

Specification

Procedure SetAdminPassword
(

Password In Varchar2
);

Example

/* sets the Administrative Password to ‘My Password */

SQL>exec RDC_Encrypt_Object.SetAdminPassword(‘My Password’);

/* Logs on with the with the password and changes the Administrative Password to ‘New Password' */

SQL>exec RDC_Encrypt_Object.Login(‘My Password’);
SQL>exec RDC_Encrypt_Object.SetAdminPassword(‘New Password’);

Relational Database Consultants, Inc.
www.relationalwizards.com

Copyright 2003-2013.

The Encryption Wizard For Oracle
API Library Reference

Copyright 2003-2013 Relational Database Consultants, Inc.

12.Login
Login is used to identify Encryption Wizard Administrators if there is an Administrative
Password set. The Login method must be used to authenticate an Encryption Wizard
Administrator before any operations on existing encrypted data, decrypted views, audit
logs, runtime passwords, or restricted user lists can occur. After three attempts to Login,
this method requires you to reconnect to Oracle.

The Login method can only be called by connecting to the Oracle account
rdc_encrypt_user. All other users authenticate using Runtime Passwords and by
evoking the rdc_encrypt_runtime.login method as discussed in the next chapter.

Specification

Procedure Login
(

Password In Varchar2
);

Example

/*logs in as administrator with the password “Hello World”*/

SQL>exec RDC_Encrypt_Object.login(‘Hello World’);

Relational Database Consultants, Inc.
www.relationalwizards.com

Copyright 2003-2013.

The Encryption Wizard For Oracle
API Library Reference

Copyright 2003-2013 Relational Database Consultants, Inc.

13.ChangeRollbackSegment
This method allows you to specify a rollback segment for your session. Simply call this
method with a valid online rollback segment name and the new rollback segment will be
set as the default for the remainder of the session.

Specification

Procedure ChangeRollbackSegment
(

SegmentName In Varchar2
);

Example

SQL>exec RDC_Encrypt_Util.ChangeRollbackSegment(‘Roll_Large’);

Relational Database Consultants, Inc.
www.relationalwizards.com

Copyright 2003-2013.

The Encryption Wizard For Oracle
API Library Reference

Copyright 2003-2013 Relational Database Consultants, Inc.

14.BackupKeys

This method is used to backup the encryption keys of the Encryption Wizard to a flat-file.
Backupkeys can backup the keys for a database, schema, table, or single column. You
may also supply an optional password to insure against unauthorized restoration of
encryption keys.

Key backups are only valid for the database that they are backed-up from. This insures
that a hacker cannot restore these keys using the Encryption Wizard if they are ever
stolen. Key backups may also not span different releases of Oracle.

Specification

Procedure BackupKeys
(

FileName In Varchar2,
TableOwner In Varchar2 Default Null,
TableName In Varchar2 Default Null,
ColumnName In Varchar2 Default Null,
Password In Varchar2 Default Null

);

Examples

/* backs up all encryption keys in the database to a flat file */
SQL>exec rdc_encrypt_backup.BackupKeys(‘/u01/encrypt/bak/myfile.txt’);

/* backups up the encryption keys for the schema SCOTT using the password “TIGER” */
SQL>exec rdc_encrypt_backup.BackupKeys(‘/01/temp.txt, ‘SCOTT’, Null, Null, ‘TIGER’);

Relational Database Consultants, Inc.
www.relationalwizards.com

Copyright 2003-2013.

The Encryption Wizard For Oracle
API Library Reference

Copyright 2003-2013 Relational Database Consultants, Inc.

15.RestoreKeys

This method is used to restore the encryption keys of a flat-file to the Encryption Wizard
schema. RestoreKeys can restore the keys for a database, schema, table, or single
column. You may also supply an optional password to insure against unauthorized
restoration of encryption keys.

If you provide the Boolean TRUE for the OverWriteFlag, the Encryption Wizard will
overwrite any existing keys in the database that are restored from the flat-file.

Specification

Procedure RestoreKeys
(

FileName In Varchar2,
TableOwner In Varchar2 Default Null,
TableName In Varchar2 Default Null,
ColumnName In Varchar2 Default Null,
Password In Varchar2 Default Null,
OverWriteFlag In Boolean Default False

);

Examples

/*Restores the encryption keys for an entire database*/
SQL>exec rdc_encrypt_backup.RestoreKeys(‘/u01/encrypt/bak/myfile.txt’);

/*Restores the Encryption Keys for the table EMP, overwriting any existing keys*/
SQL>exec rdc_encrypt_backup.RestoreKeys(‘/u01/tmp.txt, ‘SCOTT’, ‘EMP’, Null, Null, True);

Relational Database Consultants, Inc.
www.relationalwizards.com

Copyright 2003-2013.

The Encryption Wizard For Oracle
API Library Reference

Copyright 2003-2013 Relational Database Consultants, Inc.

16. RestoreColumn

This method is used to restore the encryption key of a column that was previously
encrypted. After deletion, every column key is sent to a history table in case the key is
needed later in a data recovery scenario.

For instance, an old database backup may contain an encrypted table that is no longer
used in production. RestoreColumn will try to retrieve key data from the Encryption
Wizard history tables: encrypted_column_history and encrypted_table_history.

RestoreColumn does not restore restricted user lists or runtime passwords for a column,
so be sure to reset any security settings after a restore operation is successful. For normal
key backup and recovery operations use BackupKeys and RestoreKeys.

Specification

Procedure RestoreColumn
(

TableOwner In Varchar2,
TableName In Varchar2,
ColumnName In Varchar2

)

Examples

/*Restores the encryption key for the column ename in the table scott.emp */
SQL>exec rdc_encrypt_object.restorecolumn('SCOTT', 'EMP', 'ENAME');

Relational Database Consultants, Inc.
www.relationalwizards.com

Copyright 2003-2013.

The Encryption Wizard For Oracle
API Library Reference

Copyright 2003-2013 Relational Database Consultants, Inc.

17. SetDefaultMask

This method is used in conjunction with restricted user lists and runtime passwords. By
default, if a user fails authentication with the Encryption Wizard, an Oracle error will
occur if a decryption (read) is attempted. These Oracle errors are sometimes confusing
for applications and not necessary.

With a default mask for a given column, an unauthenticated user simply will see a null or
constant string such as '???' in place of the data:

Select Ename From Decrypted_View.

ENAME

???
???
???

When using SetDefaultMask, make sure unauthenticated users and scripts are not
selecting from decrypted data and using default masks to change data or make business
decisions. Encryption Wizard auditing is not performed when a unauthenticated user
selects a default mask, since no decryption attempt is made.

Specification

Procedure SetDefaultMask
(

DefaultMask In Varchar2,
TableOwner In Varchar2,
TableName In Varchar2,
ColumnName In Varchar2

)

Examples

/*Sets the default mask to ??? for the column ename in the table scott.emp */
SQL>exec RDC_Encrypt_Object.SetDefaultMask('???', 'SCOTT', 'EMP', 'ENAME');

/*Sets the default mask to return a NULL value for the column ename in the table scott.emp */
SQL>exec RDC_Encrypt_Object.SetDefaultMask(Null, 'SCOTT', 'EMP', 'ENAME');

/*Sets the default mask to 0 for the number column sal in the table scott.emp */
SQL>exec RDC_Encrypt_Object.SetDefaultMask(0, 'SCOTT', 'EMP', 'SAL');

/*Sets the default mask to return SYSDATE for the date column hiredate in the table scott.emp */
SQL>exec RDC_Encrypt_Object.SetDefaultMask('SYSDATE', 'SCOTT', 'EMP', 'HIREDATE');

Relational Database Consultants, Inc.
www.relationalwizards.com

Copyright 2003-2013.

The Encryption Wizard For Oracle
API Library Reference

Copyright 2003-2013 Relational Database Consultants, Inc.

18. GetDefaultMask

GetDefaultMask returns the current mask for a given encrypted column. If the default
mask is set to NULL, this function will return NULL. If there is no default mask set for
the given column, then GetDefaultMask will raise an Oracle exception. To avoid the
exception, use IsDefaultMask in conjunction with this function as shown in the example
below.

Regardless, of the original data type of the mask, GetDefaultMask returns a Varchar2
representation.

Specification

Procedure GetDefaultMask
(

TableOwner In Varchar2,
TableName In Varchar2,
ColumnName In Varchar2

)

Examples

/*Prints the default mask for the encrypted column ename*/
SQL>exec bms_output.put_line(RDC_Encrypt_Object.GetDefaultMask('SCOTT', 'EMP', 'ENAME'));

/* Prints the default mask for the encrypted column ename, if one exists */
Begin

If RDC_Encrypt_Object.IsDefaultMask('SCOTT', 'EMP', 'ENAME') Then
 dbms_output.put_line(RDC_Encrypt_Object.GetDefaultMask('SCOTT', 'EMP', 'ENAME'));
Else
 dbms_output.put_line('No default mask found for ename');
End If;

End;
/

Relational Database Consultants, Inc.
www.relationalwizards.com

Copyright 2003-2013.

The Encryption Wizard For Oracle
API Library Reference

Copyright 2003-2013 Relational Database Consultants, Inc.

19. RemoveDefaultMask

This method is used remove default mask(s) for any schema, table or column that were
set using the API call SetDefaultMask. After a default mask is removed, by default again
an unauthenticated user will receive an Oracle error when attempting a decryption
operation with the Encryption Wizard.

Specification

Procedure RemoveDefaultMask
(

TableOwner In Varchar2 Default Null,
TableName In Varchar2 Default Null,
ColumnName In Varchar2 Default Null

)

Examples

/*Removes any default mask for all encrypted database columns */
SQL>exec RDC_Encrypt_Object.RemoveDefaultMask;

/*Removes any default masks for all encrypted columns in the schema scott */
SQL>exec RDC_Encrypt_Object.RemoveDefaultMask('SCOTT');

/*Removes any default masks for encrypted columns in the table scott.emp */
SQL>exec RDC_Encrypt_Object.RemoveDefaultMask(''SCOTT', 'EMP');

/*Removes the default mask for the column hiredate, if one exists */
SQL>exec RDC_Encrypt_Object.RemoveDefaultMask('SCOTT', 'EMP', 'HIREDATE');

Relational Database Consultants, Inc.
www.relationalwizards.com

Copyright 2003-2013.

The Encryption Wizard For Oracle
API Library Reference

Copyright 2003-2013 Relational Database Consultants, Inc.

20. CountEncryptedColumns

This Method is used in determining if a given column is encrypted. It can also be used to
check to see if a given table or schema has encrypted columns within it. The method
CountEncryptedColumns will either return a positive integer specifying the number of
encrypted columns for the object scope, or the function will return 0 if there are no
currently encrypted columns.

Specification

Function CountEncryptedColumns
(

TableOwner In Varchar2 Default Null,
TableName In Varchar2 Default Null,
ColumnName In Varchar2 Default Null

)
Return Number;

Example

/*return the number of columns encrypted in the SCOTT schema*/
SQL>exec dbms_output.put_line(RDC_Encrypt_Util.CountEncryptedColumns(‘SCOTT’));

/*return 1 if EMP.SAL is encrypted, 0 if it is not */
SQL>exec dbms_output.put_line(RDC_Encrypt_Util.CountEncryptedColumns(‘SCOTT’,’EMP’,’SAL’));

/*Pseudo-Code for EMP.SAL check within 3 GL Language via generic CALL method*/
If (call((RDC_Encrypt_Util.CountEncryptedColumns(‘SCOTT’,’EMP’,’SAL’)) > 0)

print(‘column encrypted’);

Relational Database Consultants, Inc.
www.relationalwizards.com

Copyright 2003-2013.

The Encryption Wizard For Oracle
API Library Reference

Copyright 2003-2013 Relational Database Consultants, Inc.

21. CountAuditLog

This method counts the number of audit records in the table encrypt_audit for a given
schema, table, or column. Records no longer needed from this table can be deleted at
any time manually.

Function CountAuditLog
(

TableOwner In Varchar2 Default Null,
TableName In Varchar2 Default Null,
ColumnName In Varchar2 Default Null

)
Return Number;

/* Counts all audit records for the schema SCOTT */

SQL>exec dbms_output.put_line(RDC_Encrypt_Util.CountAuditLog(‘SCOTT’));

/* Counts all audit records for the column EMP.SAL */

SQL> exec dbms_output.put_line(RDC_Encrypt_Util.CountAuditLog (‘SCOTT’,’EMP’,’SAL’));

/*Counts all Encryption Wizard audit records in your RDBMS*/

SQL> exec dbms_output.put_line(RDC_Encrypt_Util.CountAuditLog;

Relational Database Consultants, Inc.
www.relationalwizards.com

Copyright 2003-2013.

The Encryption Wizard For Oracle
API Library Reference

Copyright 2003-2013 Relational Database Consultants, Inc.

22. ReKeyData

This method allows one to re-key the encryption keys for a given schema, table, or
column. Make sure database users are not reading and/or writing to the encrypted
columns chosen for re-keying. This process will take approximately as long as the
method EncryptData on any given data set.

New and old key values are stored in the table internal_audit. In the case of a re-keying
failure, such as a database shutdown or lock contention error, simply call the method
again and re-key recovery will commence for the remaining rows that were not re-keyed.

Procedure RekeyData
(

KeyValue In Varchar2 Default Null,
TableOwner In Varchar2,
TableName In Varchar2 Default Null,
ColumnName In Varchar2 Default Null,
CommitPoint In Number Default Null

);

/* Re-keys all encrypted columns for the schema SCOTT */

SQL>exec RDC_Encrypt_Object.ReKeyData(Null, ‘SCOTT’);

/* Re-keys all encrypted rows for the table SCOTT.EMP */

SQL>exec RDC_Encrypt_Object.ReKeyData(Null, ‘SCOTT’, 'EMP');

/*Re-keys the column SAL using a specified string as the seed to the new key */

SQL>exec RDC_Encrypt_Object.ReKeyData('Hello World', ‘SCOTT’, 'EMP', 'SAL');

Relational Database Consultants, Inc.
www.relationalwizards.com

Copyright 2003-2013.

The Encryption Wizard For Oracle
API Library Reference

Copyright 2003-2013 Relational Database Consultants, Inc.

23. IsObjectAudited
This method returns TRUE if a given schema, table, or column contains columns being
audited, and FALSE otherwise.

Specification

Function IsObjectAudited
(

TableOwner In Varchar2,
TableName In Varchar2 Default Null,
ColumnName In Varchar2 Default Null

)
Return Boolean;

Examples

/*PL/SQL Example – Print Notification if SCOTT.EMP contains no audited columns*/

Begin
If RDC_Encrypt_Util.IsObjectAudited(‘SCOTT’,’EMP’) = False Then

DBMS_Output.Put_Line(‘Encrypted Table Scott is not being audited’);
End If;

End;
/

Relational Database Consultants, Inc.
www.relationalwizards.com

Copyright 2003-2013.

The Encryption Wizard For Oracle
API Library Reference

Copyright 2003-2013 Relational Database Consultants, Inc.

24. IsDecryptedView

IsDecryptedView is a function that returns TRUE if a decrypted view has been created
against a given base table and returns FALSE if there is no such decrypted view created
for the encrypted base table.

Specification

Function IsDecryptedView
(

TableOwner In Varchar2,
TableName In Varchar2

)
Return Boolean;

Examples

/*PL/SQL Example - creates a decrypted view V_EMP for table SCOTT.EMP if there is no such view*/
Begin

If RDC_Encrypt_Util.IsDecryptedView(‘SCOTT’,’EMP’) = False Then

RDC_Encrypt_Util.CreateDecryptedView(‘SCOTT’,’EMP’,’SCOTT’,’V_EMP’);
End If;

End;
/

Relational Database Consultants, Inc.
www.relationalwizards.com

Copyright 2003-2013.

The Encryption Wizard For Oracle
API Library Reference

Copyright 2003-2013 Relational Database Consultants, Inc.

25. EncryptNullData

The EncryptNullData method is used to set null encryption globally for the Encryption
Wizard. Usually the Encryption Wizard ignores null values, but there are some instances
in which even null values may need to be encrypted. Use this function to turn on and off
NULL value encryption.

Setting this value will not affect null values currently encrypted or not encrypted. To
change their value, set them to NULL after the call to EncryptNullData using a decrypted
view or a direct call to the runtime library as such:

Update V_Emp Set COMM = Null Where COMM Is Null;

In this case, all of the null values contained in the decrypted view V_EMP for the column
EMP.COMM will now be encrypted – If EncryptNullData is set to YES for the database
as whole or for the object EMP.COMM.

For databases with a great deal of null data, encrypting this data will require more free
space within a given tablespace to store the encrypted values.

Specification

Procedure EncryptNullData
(

Val In Varchar2,
TableOwner In Varchar2 Default Null,
TableName In Varchar2 Default Null,
ColumnName In Varchar2 Default Null

)

Examples

/* Instructs the Encryption Wizard to encrypt null data from this point forward */
Exec RDC_Encrypt_Util.EncryptNullData('Yes');

/* Instructs the Encryption Wizard to ignore null data from this point forward */
Exec RDC_Encrypt_Util.EncryptNullData('No');

/* Instructs the Encryption Wizard to encrypt null data for the column COMM */
Exec RDC_Encrypt_Util.EncryptNullData('Yes', 'SCOTT', 'EMP', 'COMM');

/* Instructs the Encryption Wizard to not encrypt null data for the schema SCOTT */
Exec RDC_Encrypt_Util.EncryptNullData('No', 'SCOTT');

Relational Database Consultants, Inc.
www.relationalwizards.com

Copyright 2003-2013.

The Encryption Wizard For Oracle
API Library Reference

Copyright 2003-2013 Relational Database Consultants, Inc.

26. IsRecovery

The IsRecovery method method returns a Boolean if recovery is needed on an encrypted
base table. Recovery implies that an attempt to decrypt or encrypt an entire base table
was only partially successful.

Specification

Function IsRecovery
(

TableOwner In Varchar2,
TableName In Varchar2

)
Return Boolean;

Examples

/*PL/SQL example – If SCOTT.EMP needs recover, then decrypt the table*/

Begin
If RDC_Encrypt_Util.IsRecovery(‘SCOTT’,’EMP’) = True Then

RDC_Encrypt_Object.DecryptData(‘SCOTT’,’EMP’);
End If;

End;
/

Relational Database Consultants, Inc.
www.relationalwizards.com

Copyright 2003-2013.

The Encryption Wizard For Oracle
API Library Reference

Copyright 2003-2013 Relational Database Consultants, Inc.

27. GetVersionNo

GetVersionNo returns the current string of the Encryption Wizard version source code
that you are running. This may be helpful in troubleshooting.

Specification

Function GetVersionNo
Return Varchar2

Examples

SQL>exec dbms_output.put_line(RDC_Encrypt_Object.getversionno);

Relational Database Consultants, Inc.
www.relationalwizards.com

Copyright 2003-2013.

The Encryption Wizard For Oracle
API Library Reference

Copyright 2003-2013 Relational Database Consultants, Inc.

28. GetLastErrorMsg
GetLastErrorMsg Method is used to retrieve the last Encryption Wizard error received for
a given session. After a call to this method, this last error message is again initialized to
NULL. All Encryption Wizard errors are recorded in the table Internal_Error.

Specification

Function GetLastErrorMsg
Return Varchar2;

Examples

/*Prints the last error for your session*/

SQL>exec dbms_output.put_line(‘Encryption Wizard Message: ‘||RDC_Core.GetLastErrorMsg);

/* Performs error checking after an attempt to encrypt the table SCOTT.EMP*/
SQL>
Begin

RDC_Encrypt_Object.EncryptData(Null, ‘SCOTT’, ‘EMP’);

Exception When Others Then
DBMS_Output.Put_Line(‘Err: ‘||Nvl(RDC_Core.GetLastErrorMsg, SQLERRM));

End;
/

Relational Database Consultants, Inc.
www.relationalwizards.com

Copyright 2003-2013.

The Encryption Wizard For Oracle
API Library Reference

Copyright 2003-2013 Relational Database Consultants, Inc.

Section Two

Runtime Methods

The Encryption Wizard Runtime Methods are designed for use by any end-user who is
required to read and/or write encrypted data. The Runtime Library consists of two core
functions, EncryptData and DecryptData. These functions are overloaded to return
Varchar2, Blob, Clob, Date, and Number values depending on the type of parameter
passed into the method. Usually these functions are hidden from the user through the
implementation of Decrypted Views.

To use both EncryptData and the DecryptData function a user needs to pass in the integer
value of the column_seq for that column. This value can be queried from the view
encrypted_tab_columns or this value can be returned from the function GetColumnSeq as
discussed in the previous section. The method GetColumnSeq is called from
RDC_Encrypt_Runtime and can be accessed by the general Oracle user.

Along with the core encryption/decryption methods of the Runtime Library, a login
method is also provided for end-users to optionally authenticate Runtime Passwords.
The default configuration of the runtime library allows all Oracle users the ability to
encrypt or decrypt data dependent on their base table grants.

Because DBA-level users have access to all database objects, to restrict a DBA’s access
to encrypted data, the Encryption Wizard allows you to define Default Runtime
Passwords which require all users to authenticate themselves against encrypted objects.
You may also employ Restricted User Lists and User-Specific Runtime Passwords to lock
out users such as SYS or SYSTEM completely.

To add an additional layer of protection against data-theft by non-DBA users who may
have the proper Oracle grants - you may issue this command to revoke the Encryption
Wizard’s Runtime Package from public.

SQL>revoke execute on rdc_encrypt_runtime from public;

After this command succeeds, simply grant privileges to execute the Runtime Library to
individual users as such:

SQL>grant execute on rdc_encrypt_runtime to SCOTT;

Relational Database Consultants, Inc.
www.relationalwizards.com

Copyright 2003-2013.

The Encryption Wizard For Oracle
API Library Reference

Copyright 2003-2013 Relational Database Consultants, Inc.

1. EncryptData

EncryptData takes any valid string, number, or date and encrypts the data using the key
specified by the Column_Seq, which is the primary key of the table encrypted_column.

EncryptData can be used within PL/SQL, as a user-defined function, or embedded within
a language such as Java, C++ or PHP. For Columns that specify DES or AES
encryption, the Varchar2, BLOB, or CLOB value will always be returned as rounded
upwards to a multiple of 8 bytes if necessary. Use EncyptDataNLS for NVarchar2 and
NCHAR datatypes.

Specification

Function EncryptData
(

ColumnSeq In Number,
InputData In Varchar2, Nvarchar2, Date, Number, Blob, Clob*

)
Return Varchar2, Nvarchar2, Date, Number, CLOB, BLOB*

*Overloaded

Examples

/* Directly Inserts a new employee with an encrypted ENAME to the base table SCOTT.EMP */
SQL>Insert Into Emp
(

EmpNo,
Ename

)
Values
(

23454,
RDC_Encrypt_Runtime.EncryptData(ColumnSeq, ‘Sarah Jones’)

);

/*Updates a new encrypted Salary number directly to the encrypted base table SCOTT.EMP*/
SQL>Update EMP Set SAL = RDC_Encrypt_Runtime.EncryptData(ColumnSeq, 65000)
Where RDC_Encrypt_Runtime.DecryptData(ColumnSeq, Ename) = ‘Sarah Jones’;

/* Updates SCOTT.EMP directly by encrypting the value “Joe Smith” for the column ENAME.
 Note the use of GetColumnSeq to determine the primary key for EMP.ENAME*/

SQL>Update SCOTT.EMP Set Ename =
rdc_encrypt_runtime.EncryptData
(

RDC_Encrypt_Runtime.GetColumnSeq(‘SCOTT’,’EMP’,’ENAME’),
‘Joe Smith’

) Where EMP_NO = &Emp_No;

Relational Database Consultants, Inc.
www.relationalwizards.com

Copyright 2003-2013.

The Encryption Wizard For Oracle
API Library Reference

Copyright 2003-2013 Relational Database Consultants, Inc.

2. DecryptData
DecryptData takes any valid string, number, or date and decrypts the data using the
password key specified by the ColumnSeq variable, thus the key relevant for a given
database column. DecryptData can be used within PL/SQL, as a user-defined function,
or embedded within a language such as Java, C++ or PHP.

For Columns that specify DES encryption the Varchar2 input variable must be a multiple
of 8 bytes or DecyptData will issue a fatal-error. Use DecryptDataNLS for NVarchar2
and NCHAR datatypes.

Specification

Function DecryptData
(

ColumnSeq In Number,
InputData In Varchar2, Nvarchar2, Date, Number, Blob, Clob*

)
Return Varchar2, Nvarchar2, Date, Number, Blob, Clob*

*Overloaded

Examples

/*Select un-encrypted salary from the table EMP*/

SQL>select rdc_encrypt_runtime.DecryptData(ColumnSeq, SAL) from EMP;

/*Select the count from the encrypted table EMP where the salary is greater than 50,000*/

SQL>select count(*) from EMP where rdc_encrypt_runtime.DecryptData(ColumnSeq, SAL) > 50000

/*Decrypts the ENAME column using a nested call to GetColumnSeq*/

SQL>Select
rdc_encrypt_runtime.DecryptData
(

RDC_Encrypt_Runtime.GetColumnSeq(‘SCOTT’,’EMP’,’ENAME’),
ENAME

)
From
SCOTT.EMP;

Relational Database Consultants, Inc.
www.relationalwizards.com

Copyright 2003-2013.

The Encryption Wizard For Oracle
API Library Reference

Copyright 2003-2013 Relational Database Consultants, Inc.

3. GetColumnSeq
The GetColumnSeq method is used to retrieve the primary key, column seq, from the
table encrypted_column. This method returns a positive integer if the given column is
currently encrypted and a NULL value if the column is not encrypted. You can also
query the column seq directly from the view encrypted_tab_columns.

Specification

Function GetColumnSeq
(

TableOwner In Varchar2,
TableName In Varchar2,
ColumnName In Varchar2

)
Return Number;

Examples

/* Retrieves the column seq for the column EMP.ENAME*/

SQL>exec dbms_output.put_line(RDC_Encrypt_Runtime.GetColumnSeq(‘SCOTT’,’EMP’,’ENAME’));

/*Decrypts the encrypted ENAME column using a nested call to GetColumnSeq (see next section) */

SQL>Select
rdc_encrypt_runtime.DecryptData
(

RDC_Encrypt_Runtime.GetColumnSeq(‘SCOTT’,’EMP’,’ENAME’),
ENAME

)
From
SCOTT.EMP;

Relational Database Consultants, Inc.
www.relationalwizards.com

Copyright 2003-2013.

The Encryption Wizard For Oracle
API Library Reference

Copyright 2003-2013 Relational Database Consultants, Inc.

4. Login
The Login Method is used to authenticate users against objects that are protected with
Runtime Passwords. This method validates the Runtime Password assigned to protect a
given schema, table, or column. After a user has been authenticated with the correct
password, they are allowed their specified access to encrypted objects for the remainder
of their Oracle session. If a user reconnects they will need to again call this method to
authenticate themselves against any password-protected objects.

Login can be called directly from SQL*Plus or embedded in a language such as Java, C,
or PHP. Login is always called by oracle accounts other than the Encryption Wizard
account.

Specification

Procedure Login
(

Password In Varchar2 Default Null,
TableOwner In Varchar2 Default Null,
TableName In Varchar2 Default Null,
ColumnName In Varchar2 Default Null

);

Examples

/*Authenticates the current Oracle user for the Table EMP*/

SQL>exec rdc_encrypt_runtime.login(‘MyPassword’,’SCOTT’,’EMP’);

/* Authenaticates the current Oracle user for the Schema SCOTT*/

SQL>exec rdc_encrypt_runtime.login(‘MyPassword’,’SCOTT’);

Relational Database Consultants, Inc.
www.relationalwizards.com

Copyright 2003-2013.

The Encryption Wizard For Oracle
API Library Reference

Copyright 2003-2013 Relational Database Consultants, Inc.

5. GetLastErrorMsg
GetLastErrorMsg Method is used to retrieve the last Encryption Wizard error received for
a given session. After the call to this method, this last error message is again initialized
to NULL. All Encryption Wizard errors are recorded in the table Internal_Error.

Specification

Function GetLastErrorMsg
Return Varchar2

Examples

/*prints out the last message from the Encryption Wizard for the given session*/

SQL>exec dbms_output.put_line(‘Last Message: ‘||RDC_Encrypt_Runtime.GetLastErrorMsg);

/* Performs error checking after an attempt to encrypt the table SCOTT.EMP*/

SQL>
Begin

RDC_Encrypt_Object.EncryptData(Null, ‘SCOTT’, ‘EMP’);

Exception When Others Then
DBMS_Output.Put_Line(‘Error: ‘||Nvl(RDC_Core.GetLastErrorMsg, SQLERRM));

End;
/

Relational Database Consultants, Inc.
www.relationalwizards.com

Copyright 2003-2013.

The Encryption Wizard For Oracle
API Library Reference

Copyright 2003-2013 Relational Database Consultants, Inc.

Section Three

HSM Management

The Encryption Wizard HSM Methods allow Encryption Wizard Administrators the
ability to view and change parameters on the Encryption Wizard to reflect changes in the
HSM configuration.

All parameters for the HSM module are encrypted in the table hsm_parameters. Values
like the HSM slot number or the HSM password may periodically change, and these
changes can easily be propagated to the Encryption Wizard.

All errors for these API calls and messages are stored in the System Log, the table
internal_audit.

In most cases, if an HSM card is not present or an invalid Master Key is passed to the
Encryption Wizard, an “Invalid License” error will appear in the system log – thus
protecting your HSM dependent data from corruption. Encrypted data from an HSM
master key cannot be modified by the Encryption Wizard unless the returned master key
matches an internal HSM hashing value for each column.

Relational Database Consultants, Inc.
www.relationalwizards.com

Copyright 2003-2013.

The Encryption Wizard For Oracle
API Library Reference

Copyright 2003-2013 Relational Database Consultants, Inc.

1. Initialize

Initialize is the method run by the script rdc_hsm_install.sql. Because initialize resets all
the keys and licensed passwords for the Encryption Wizard, this procedure checks for
two basic things before running:

1. Have any previous HSM_Parameters table been dropped manually?
2. Are there zero encrypted columns in the database?

Once these two prerequisites are met, initialize will create a key store on the HSM card
based on the Key Name provided and the HSM password, then Initialize will recreate the
HSM_Parameter table.

Specification

Procedure Initialize
(

CardType In Varchar2,
Password In Varchar2,
KeyName In Varchar2,
SlotNum In Number Default Null

);

Examples

/* Create a new key store on the HSM, searchable for the HSM slot */
SQL> exec rdc_encrypt_hsm.initialize('Luna PCI 7000','My Password','My Key');

/* Creates a new key store on the HSM that must exist on slot 2 */
SQL> exec rdc_encrypt_hsm.initialize('Luna PCI 7000','My Password','My Key','2');

/* With Error-Trapping */
SQL>
Begin

RDC_Encrypt_HSM.Initialize(“Luna PCI 7000, ‘Hello World’, ‘My Key'’);

Exception When Others Then
DBMS_Output.Put_Line(‘Error: ‘||Nvl(RDC_Core.GetLastErrorMsg, SQLERRM));

End;
/

Relational Database Consultants, Inc.
www.relationalwizards.com

Copyright 2003-2013.

The Encryption Wizard For Oracle
API Library Reference

Copyright 2003-2013 Relational Database Consultants, Inc.

2. GetParameter

GetParameter is exclusively used to view the contents of the encrypted table,
HSM_Parameters. For a list of possible parameters, execute this query:

SQL>Select Name from HSM_Parameters;

Specification

Function GetParameter
(

Name In Varchar2,
Password In Varchar2

)
Return Varchar2;

Examples

/* Displays the current slot number of the HSM card installed */
SQL> Select RDC_Encrypt_HSM.GetParameter('Slot Num', 'HSM Password') from dual;

/* Displays the Key Name where the Encryption Wizard master key is stored */
SQL> exec dbms_output.put_line(RDC_Encrypt_HSM.GetParameter('Key Name', 'HSM Password'));

Relational Database Consultants, Inc.
www.relationalwizards.com

Copyright 2003-2013.

The Encryption Wizard For Oracle
API Library Reference

Copyright 2003-2013 Relational Database Consultants, Inc.

3. GetJavaParameter

GetJavaParameter is primarily used for debugging any errors within the Oracle JVM. It is
usually run at the suggestion of the Encryption Wizard support staff

Specification

Function GetJavaParameter
(

Name In Varchar2
)
Return Varchar2;

Examples

/* Displays the last exception for the Java HSM interface */
SQL> Select RDC_Encrypt_HSM.GetJavaParameter('LastException') from dual;

/* Displays the key length in bytes of the Master Key stored in the HSM */
SQL> exec dbms_output.put_line(RDC_Encrypt_HSM.GetJavaParameter('GetKeyLength'));

/* Displays the current Java Library Path of the Oracle RDBMS */
SQL> Select RDC_Encrypt_HSM.GetJavaParameter('java.library.path') from dual;

Relational Database Consultants, Inc.
www.relationalwizards.com

Copyright 2003-2013.

The Encryption Wizard For Oracle
API Library Reference

Copyright 2003-2013 Relational Database Consultants, Inc.

4. ChangeParameter

ChangeParameter is used to modify the contents of the highly-encrypted table,
HSM_Parameters. For a list of possible parameters, execute this query:

SQL>Select Name from HSM_Parameters;

Specification

Procedure ChangeParameter
(

Name In Varchar2,
Value In Varchar2,
Password In Varchar2

);

Examples

/* Changes the current HSM slot number to 1 */
SQL> exec RDC_Encrypt_HSM.ChangeParameter('Slot Num', '1', 'HSM Password');

* Changes the current HSM slot number to choose first available, which is -1 */
SQL> exec RDC_Encrypt_HSM.ChangeParameter('Slot Num', '-1', 'HSM Password');

/* Updates a change to the HSM password for the Encryption Wizard */
SQL> exec RDC_Encrypt_HSM.ChangeParameter('Password', 'New Password', 'HSM Password');

Relational Database Consultants, Inc.
www.relationalwizards.com

Copyright 2003-2013.

