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Abstract

Specific HLA genotypes are known to be linked to either resistance or susceptibility to certain diseases or sensitivity to
certain drugs. In addition, high accuracy HLA typing is crucial for organ and bone marrow transplantation. The most
widespread high resolution HLA typing method used to date is Sanger sequencing based typing (SBT), and next generation
sequencing (NGS) based HLA typing is just starting to be adopted as a higher throughput, lower cost alternative. By HLA
typing the HapMap subset of the public 1000 Genomes paired Illumina data, we demonstrate that HLA-A, B and C typing is
possible from exome sequencing samples with higher than 90% accuracy. The older 1000 Genomes whole genome
sequencing read sets are less reliable and generally unsuitable for the purpose of HLA typing. We also propose using
coverage % (the extent of exons covered) as a quality check (QC) measure to increase reliability.
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Introduction

One of the driving forces of large-scale sequencing studies has

been hunting for mutations that can be associated with genetic

diseases [1]. In particular, among the mutation patterns found by

these genome-wide association studies (GWAS), different geno-

types of the human leukocyte antigen (HLA) genes are showing

significant correlation to resistance or susceptibility to particular

conditions like AIDS [2], type 1 diabetes [3] or other diseases [4].

The HLA proteins are part of the immune system and play a role

in response to infection, some diverse monogenic disorders, auto-

immunity, cancer, transplantation, and adverse drug response.

The HLA region represents the genome’s highest concentration of

potential biomarkers for most studied diseases. Specific HLA

genotypes have already been associated with sensitivities to five

marketed drugs and are currently being investigated as biomarkers

in several clinical trials [4].

Using next generation sequencing (NGS) for HLA typing has

lagged behind due to some challenges specific to this region. HLA

genes are the most polymorphic part of the human genome. There

are several thousand known alleles, and most individuals are

heterozygous in most HLA loci. In addition, this region contains

segmental duplications which are significantly longer than the

read-length and insert sizes achievable with current sequencing

technologies, and there are a number of similar pseudogenes.

Finally, the genetics for some loci are complex (heterodimeric

proteins with multiple possible genes). This all contributes to

making the classic reference-based alignment of NGS reads

unreliable.

The first attempts to determine the HLA type from NGS data

used relatively long Roche-454 reads from targeted sequencing

data [5–7]. Illumina data with shorter read lengths have less

frequently been used for HLA typing [8–10] and Illumina reads

obtained from other studies like whole-genome or whole-exome

studies have rarely been used for this purpose. Large-scale

sequencing efforts, such as the 1000 Genomes (1KG) project

[11] are fundamentally aimed at population genetics and are not

intended to precisely genotype individuals. However, as the 1KG

project shares some samples with the HapMap project [12] and in

some of the previous studies HapMap samples were used for the

HLA typing experiments, reference values for HLA typing are

available for some of the samples in the 1KG project. This made it

possible to compare HLA types obtained using previously

developed and validated methods and the corresponding types

calculated from the public 1KG paired Illumina short-read data.

In this paper we present results of a feasibility study for HLA

typing from whole genome and whole exome paired Illumina data,

concentrating on MHC class I genes HLA-A, HLA-B and HLA-

C. Although we attempted to determine the type of this three

genes from every sample, it became apparent that in many cases

there are simply not enough reads to get results for all the loci.

Therefore, our other purpose is to determine the current

limitations of both the experimental and computational aspects

of this procedure, and provide simple measures for quality control

for maximal accuracy. To achieve our goals we have selected short

read sets from the public 1000 Genomes data repository with

known HLA types from the HapMap survey and developed an

algorithm to align reads to the IMGT/HLA [13] database and

interpreted the results to get the most likely allele set for

individuals. We also discuss the limitations of this method and

provide directions for further improvements.
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Results and Discussion

Concordance to samples measured by SSO
Our most important results are that - for experiments passing

the QC filters (see section "Quality check measures for correct

typing" below) - more than 90% concordance for whole-exome

samples, and nearly 80% concordance for low-coverage whole-

genome samples could be achieved (Table 1) based on a

comparison with known 4 digit typing results [5,12]. Spreadsheets

with calculated and validation values are in Table S1 for whole-

exome and whole-genome datasets. Erlich et al. [5] conducted a

similar validation for HapMap samples using 454 technology, and

even corrected some types that were originally determined by

sequence specific oligonucleotide (SSO) hybridization. The HLA

types of HapMap samples in this corrected allele list that overlap

with HapMap samples sequenced by the 1KG project were used

as a reference in our HLA typing experiments. There is still a

chance that some of our mistypings are due to mistakes in this

corrected reference table, but according to our knowledge these

are the most accurate validation values available up to this date.

All our typings have at least 4-digits, and 6-digit precision is

available for most samples. Since no validation data was available

for the 6-digit HLA types, we did not investigate the results at this

depth of resolution. Typing with 8-digit resolution was not

attempted, as most whole genome sequencing runs had insufficient

coverage even on the exons of the studied HLA genes and due to

the nature of the sequencing project, intron data was obviously not

available for the whole exome runs. Still, the results are promising,

especially because the experiments were not HLA-targeted but

produced by generic large-scale sequencing runs.

Quality check measures for correct typing
The index file of the 1KG experiments (version 20121211) was

filtered for datasets containing reads of paired Illumina sequencing

and Coriell IDs of HapMap samples in the reference allele list.

After typing the filtered sets, it became apparent that some

experiments are not suitable for our purposes due to short

readlength and/or low coverage. Therefore, we had to establish

general quality check (QC) measures which can be used for each

sample in order to achieve reliable HLA typing. There are 270

Coriell IDs in the HapMap database, but at the end of QC check

there were only 31 Coriell IDs (41 samples) for whole-genome

experiments and 131 Coriell IDs (182 samples) for whole-exome

experiments left – many Coriell cell lines were sequenced more

than once. Figure 1 explains the details of this filtering process.

The very first quality check measure was based on read length;

only experiments where the reads were longer than 76 bases for

Table 1. Concordance values for samples passing both quality check values.

Samples passing QC Whole exome Whole genome

Nr. of alleles typed Concordance% Nr. of alleles typed Concordance%

HLA-A 340 92.3 52 78.9

HLA-B 360 96.7 60 85.0

HLA-C 322 92.6 24 95.8

All the genes 1022 93.9 136 84.6

Quality check (QC) was applied in these subsequent steps: i) only those samples were processed where the length of the read was longer than 76 bps for both ends ii)
after alignment the percentage of the covered region (c%) was calculated for exons 2 and 3. If any of these exons were covered by reads only less than 70% of the
extent of the exon, the sample failed QC and was discarded. iii) finally, using this formerly calculated c% value, if the average c% for exons 2 and 3 was less than 80%,
the sample was discarded. Average coverage depth was not considered since c% was a better indicator of correct concordance.
doi:10.1371/journal.pone.0078410.t001

Figure 1. Filtering work-flow. There 1000 Genomes index file was
first filtered for paired Illumina samples. There are 270 Coriell cell lines
in the HapMap set, from the 1000 Genomes samples we had to select
only those IDs which are among these cell lines. After separating the
whole genome and whole exome sequencing experiments, these two
types of samples were analyzed separately since the average coverage
depth is very different for the two datasets. Those samples where the
readlength was less than 76 base pairs for any part of the pair were
thrown away and was not processed further. Finally, HLA typing was
successful only for samples that were passing the coverage QC
measures. The first such measure was that the coverage % for either
exons 2 or 3 had to be at least 70% – if any of the exons was covered in
less extent, the typing for that gene (for both alleles) was discarded.
Furthermore, typing also failed if the average coverage % calculated for
exons 2 and 3 was less than 80%.
doi:10.1371/journal.pone.0078410.g001

HLA Typing from 1000 Genomes Data

PLOS ONE | www.plosone.org 2 November 2013 | Volume 8 | Issue 11 | e78410



both reads in each pairs were used. Having shorter reads resulted

in ambiguous alignments, and NGS technology producing shorter

reads than this can be regarded as obsolete. Most of the samples

have reads of length 90 or 101 bps (Table 2). Read length shows

clear correlation to concordance: this can be seen on Figure 2

depicting only whole-exome samples. Better concordance for

longer reads is not surprising, low typing accuracy for 76 bps reads

indicates that from practical point of view at least 76 bps reads or

even 100 bps or longer reads are needed to have reliable results.

Correlation coefficients between concordance values and read

length were calculated using the Kendall rank correlation t
method [14]. For HLA-A, the correlation coefficient didn’t

significantly differ from zero (t~0:034, p~0:5832). For HLA-B

and HLA-C, the correlation tests were significant (HLA-B:

t~0:26, p~3:439|10{5, HLA-C: t~0:167, p~0:008). The

correlation test was also significant for per sample concordance

(i.e. the summarized concordance for all HLA-A, B and C alleles

of a sample; t~0:175, p~0:003831).

Since the reads in the 1000 Genomes samples have either 76, 90

or 100 bps length, using 182 samples with 100 bps readlength we

simulated a series of pairs with different readlength and calculated

the concordance for this subset. The 100 bps long reads were

trimmed to 50, 55, 60, 65,... basepairs lengths and these trimmed

sets were typed as real samples. The result of this simulation was in

accordance with the previous observation: readlength is a strong

determinant of concordance, reads shorter than 75 bps will give

lower than 90% concordance and longer readlength will give only

a slight increase. E.g. the concordance gain between 50 bps and 60

bps long reads is 7.1%, between 60 bps and 70 bps long reads is

4.4% but a mere 1.4% between 75 bps and 85 bps reads (Fig. 3).

For NGS one of the most frequently used measures is the depth

of coverage (number of reads covering a particular base position).

For exons of the relatively short and highly variable HLA genes

this measure can be misleading: even if the number of reads

covering the gene is high on average, there can be a small

important region distinguishing alleles that is not covered by any

reads. The most polymorphic parts of genes HLA-A, B and C are

the second and third exons, proper coverage for these exons is

crucial for correct typing. Therefore, as our next QC measure we

have introduced coverage percent(c%), which is the extent of the

exon covered by reads calculated as the percentage of the length of

the exon. These c% values were used in two steps; the first criteria

for passing the QC was that, for each gene both exons 2 and 3 had

to be covered at least 70% of their length, or, in other words the

c% needed to be higher than 70% for both exons 2 and 3. In ideal

case these two important exons are covered by reads in their whole

lengths. Whole exome and whole genome samples are not always

fulfilling this, therefore, we had to make a compromise and

introduce a threshold c% value that results in acceptable

concordance values.

This minimal 70% threshold is suitable because when inspecting

the relationship between minimal coverage % and concordance

for all the three genes, we can see that around this threshold the

concordance saturates and reaches 90%. Higher minimal c%
values do not necessarily gives better concordance for all the genes

(see Figure 4). If this condition was not fulfilled, both allele calls for

the given gene were discarded due to failed QC.

The next criteria we used as a quality check filter was that - in

order pass QC - 80% of exons 2 and 3 had to be covered on

average. For example c%~72% for exon 2 and c%~90% for

exon 3 would pass, but c%~72% and c%~82% respectively for

exons 2 and 3 would fail. Using this average c% threshold we

intended to have an acceptable coverage % for both important

exons. Figure 5 is similar to the previous graph showing that at 80

c% the concordance approaches or reaches 90%. Higher average

c% threshold would give better concordance (especially for HLA-

B) but we would have lower sample number. It must be

emphasized that for clinical samples (i.e. for bone marrow

transplantation) it is expected to have always 100% coverage for

both of these exons.

Coverage depth was generally low for whole-genome samples

and a magnitude higher for whole-exome samples. This was one of

the reasons to prefer coverage % as a QC filter: although coverage

depth is indeed an important measure, it is not sufficient by itself to

adequately filter out the low-concordance candidates. According

to our results, an average coverage depth of only 3 reads could be

a good QC candidate, as on average whole-genome samples

having this coverage depth has more than 80% concordance.

However, almost all the samples failing to have this depth of

coverage are also failing on the other QC measures. Those few

Table 2. Read length distribution for different experiments.

Sequencing 76bps 90bps 100–108 bps Total

Whole genome 302 8 137 447

Whole exome 60 61 96 217

Read length was the first crucial quality check value. Only paired samples were
considered having reads longer than 76 bps on both part of the pair. Reads
shorter than 76 bps were practically useless: most of the mistyped samples had
shorter read lengths.
doi:10.1371/journal.pone.0078410.t002

Figure 2. Typing concordance versus read length. Read length
can serve as the very first quality check measure; pairs with having
reads shorter than 76 bps are showing very high ambiguity and
mistyping. Even 76 bps is a lower bound for correct typing, samples
with shorter read lengths are less concordant. Picture showing
concordance and read length for all the 217 whole exome samples;
there were 360 typings (HLA-A,B,C both alleles) with readlength 76 bps,
366 typings for samples with readlength 90 bps and 514 typings for 100
or 101 bps reads (one of the HLA-C typing for 100 bps samples was
unsuccessful giving no typings at all.)
doi:10.1371/journal.pone.0078410.g002

HLA Typing from 1000 Genomes Data

PLOS ONE | www.plosone.org 3 November 2013 | Volume 8 | Issue 11 | e78410



samples having low coverage depth but passing the coverage %

QC filters were not discordant, but many samples having higher

coverage depth than 3 and failing on the coverage % filters were

discordant. We have concluded that it is advised to use only the

coverage % as a QC measure.

These simple QC filters are rather valuable tools to find out the

limits of the typing algorithm. Most of the whole-genome samples

were discarded due to these filters; on the other hand, the majority

of the whole-exome samples passed the QC filters. In practice, to

have highly concordant typing, 95% or higher coverage % on all

the exons 2 and 3 of HLA-A, B and C genes is recommended.

Obviously, exons other than 2 and 3 also have significance in

typing but according to our experience the coverage on these two

exons is the most important limiting factor in our work-flow.

Mistypings - issues of common and rare alleles
Exome samples provided wider stretches of exons covered and

deeper coverage, therefore, we have investigated mistypings only

for these samples. In 32 cases of the total 62 mistypings the mis-

types reported were rare alleles and some of these have been

assigned rather systematically to certain common types (Table 3).

According to the common and well-documented HLA alleles

catalogue [15] there is only a single allele in our whole validation

set that can be considered rare (HLA-B*41:04 for samples with

Coriell ID NA19223). Furthermore, our rare discordant types are

representing only 8 alleles in total. For example we systematically

mistyped HLA-A*03:01 to HLA-A*03:21N in several samples.

The latter null allele is indeed a rare one, and their sequences

differ only in a single cysteine (C) insert in a homopolymer region

at the start of exon 4 of the allele; HLA-A*03:01 has seven Cs and

HLA-A*03:21N has eight Cs there. Looking at the alignment

pattern it is clear that there are quite a few reads matching exactly

to both of these alleles either with seven or eight C nucleotides.

Homopolymer errors are unlikely for Illumina sequencing but are

still present [16], therefore, we decided to check this by simulating

reads using Stampy [17], not allowing indels and using read

qualities from the actual problematic data sets. The reference for

simulation was the HG19 MHC region (chr6:29,677,000-

33,486,000) representing the PGF haplotype, having HLA-

A*03:01:01:01 [18]. When typing this simulated data by our

algorithm, we expect to report identical HLA-A*03:01:01:01

alleles, however, we reported two alleles HLA-A*03:01:01:01 and

HLA-A*03:21N. The first hundred bases of HLA-A*03:21N on

exon 4 are very similar to the corresponding region of the HLA-H

pseudogene and also match to certain parts of HLA-B, C and E.

Therefore, these reads are mapping to many locations, polluting

the statistics and bringing mistypings into final results (see Figure

6).

An other example of systematic mistyping is HLA-C*08:01 to

HLA-C*08:22, the latter being a rare allele with few reported

occurrences world-wide to this date [19]. These two alleles differ

only in a single SNP on exon 6, the exonic sequence for 08:22 is

gtggaaaaggagggagctActctcaggctgcgt and for 08:01:01 is gtggaaaag-

gagggagctGctctcaggctgcgt (uppercase letters emphasizing the SNP

difference). A sequence search either in ENSEMBL [20] or UCSC

[21] reveals that the sequence that corresponds to the common

allele is rather unique. On the other hand, this part of the rare

allele can be mapped to quite a few places in the genome, mostly

to genes and pseudogenes like HLA-B, HLA-F, HLA-J or HLA-H.

Bearing in mind that our data comes from whole exome or whole

genome sequencing we concluded that again, reads from other,

similar parts of the genome are brought in during typing.

Figure 3. Effect of read length for typing concordance. Using samples having 100 bps long read we simulated a set of read by trimming reads
to shorter lengths. Typing a series of reads with different readlengths shows that concordance rises with longer readlength, and 90% concordance
can be achieved using 75bps long reads. Therefore, samples with shorter read pairs were not used in our experiments.
doi:10.1371/journal.pone.0078410.g003

HLA Typing from 1000 Genomes Data
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Figure 4. Minimal coverage % for exons 2 and 3. To pass the first c% QC filter we expected for every sample that the c% for both exons 2 and 3
were higher than 70%. It was because when plotting concordance vs. c% the concordance is higher than 90% when the c% is at least 70% and there
is no strong improvement using higher values.
doi:10.1371/journal.pone.0078410.g004

HLA Typing from 1000 Genomes Data
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This phenomenon unfortunately affects common alleles as well;

the most frequent mistyping involving two common alleles were

HLA-C*07:01 to HLA-C*07:18, HLA-A*02:06 to HLA-A*02:01

and HLA-C*18:01 to HLA-C*18:02. In fact, HLA-C*07:01 was

mistyped to two other common alleles, to HLA-C*07:19 and

HLA-C*07:26 as well. For the HLA-C*07:01 to HLA-C*07:18

Figure 5. Minimal average coverage % for exons 2 and 3. For the second QC filter based on c% we expected that the average c% for exons 2
and 3 has to reach 80%. The concordance is around 90% for this c% value and higher concordance could be reached only if the sample size decreases
significantly.
doi:10.1371/journal.pone.0078410.g005

HLA Typing from 1000 Genomes Data
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mistyping case our software identified the correct allele as a

’’runner up’’ in the candidate list with 6 digits precision as HLA-

C*07:01:01. The coding sequences of HLA-C*07:01:01 and HLA-

C*07:18 again differs only in a single SNP on exon 6 of HLA-C. A

thorough search of this sequence (gtggaaaaggagggagctgctctcag-

gYtgcgt) shows that it is indeed not only present in HLA-E, but

also in a non-MHC gene called DNTT, located on chromosome

10. The scenario is similar to the case when HLA-A*02:06 is

mistyped as HLA-A*02:01; although there are two SNPs that

discriminate the two alleles on exon 2, very similar sequences can

be found in HLA-B, C, G, H, and HLA-L. This shows that

sometime the algorithm prefers another alleles, either rare or

common, because reads from other parts of the genome or exome

are brought in during the alignment. However, it is relatively easy

to spot these discrepancies. As the concordance is around 90%

even with the current approach, we decided to tackle this problem

in the next release of the software.

An other possible source of mistyping is that in our present

approach we are using only the coding sequence parts of the allele

references. Although many genomic references including introns

are available in the IMGT/HLA database, there are still quite a

few sequences with only the exonic parts – for some only exons 2

and 3 are defined. To achieve high accuracy (correct typing) and

precision (get six or eight digit typings) the intronic part should be

included on the long term. Dealing with missing exons and introns

needs a more complex de novo approach that is beyond the scope of

the current study and is under active development [8].

Our results support the original assumption: using paired

Illumina reads from whole genome or whole exome experiments it

seems to be possible to determine the MHC-I HLA types with

around 90% or higher concordance. Typing is likely not possible

for all types of experiments though; appropriate coverage depth is

needed and, based on our findings, it seems to be even more

important to cover the whole extent of exons 2 and 3 of HLA-A, B

and C in order to have high concordance. Having many validated

examples from the HapMap project, we have been able to

establish quality check measures to indicate possible mistypings. By

introducing two simple coverage % measures, we achieved higher

than 80% concordance for low-coverage whole genome samples

and higher than 90% percent concordance for whole exome

sequencing. Of course, as other data sets can have significantly

different characteristics than the HapMap samples used in this

validation project, the coverage measures have to be refined for

each set of data. Our findings show that HLA typing can be

performed even without specific HLA primers, although the results

from whole genome or whole exome experiments will likely not be

as accurate and precise as needed for clinical application. It must

be kept in mind that some mistypings will likely occur: most of

these are usually due to data from pseudogenes and repeats that

are present in non-HLA-targeted sequencing experiments. Result

of these whole genome and exome typings can be used for

population studies i.e. for disease and drug response association

studies involving HLA types. To make the typing more accurate,

in the forthcoming versions of the software we are planning to

address the aforementioned systematic mistypings, introduce

intronic sequences into typing and generally increase concordance

by testing new sequencing technologies with longer reads.

Materials and Methods

Samples for whole-genome and whole-exome sequencing were

treated differently during the analysis because the sequencing

strategy, coverage and read length were so different for these

experiments that their results and overall accuracy was signifi-

cantly divergent.

One of our original goals while developing our HLA-typing

method was to provide software that can be run on a commodity

desktop computer using only moderate resources i.e. can be used

with limited disk space, memory and CPU power. All the raw

sequencing data from the circa 650 paired samples obviously will

not fit into the disk drive of a PC designed for daily desktop use.

Therefore, we have pre-filtered all the sets to leave only those

reads that are mappable to the IMGT/HLA database. The

filtering software selected those pairs where at least one of the

reads can be aligned with no more than three mismatches and one

soft-clip to at least one allele in the database and the orientation of

the mapped reads is forward-reverse if both reads in the pair is

aligned. Pairs that can be mapped only with indels were also

discarded. Since the alignment part of our algorithm is exactly the

same for both filtering and typing, we have used these filtered sets

for further analysis. The number of pairs filtered out for the exome

sets was between 10K to 50K, meanwhile for the whole-genome

experiments the yield after filtering was about ten times less (i.e.

only a few hundreds of pairs). The size of the filtered whole-exome

dataset is around 1.9Gb (uncompressed) which is easily manage-

able. Due to their low coverage, whole genome samples produced

much less data, the size of the filtered datasets is a mere 80 Mb.

These smaller, filtered whole-genome and whole-exome read sets

are available for download from https://s3.amazonaws.com/

omixon-publication/hapmap_hla/HapMap_1KG_HLA_suppl_

filtered_reads.tgz (about 700 Mb compressed).

Table 3. Mistyping of different alleles.

Correct allele Mistyped allele Number of cases Mistyped allele frequency

1 HLA-A*01:01 HLA-A*01:11N 3 rare

2 HLA-A*02:06 HLA-A*02:01 4 common

3 HLA-A*03:01 HLA-A*03:21N 8 rare

4 HLA-A*11:01 HLA-A*11:50Q 4 rare

5 HLA-C*07:01 HLA-C*07:18 5 common

6 HLA-C*08:01 HLA-C*08:22 10 rare

7 HLA-C*18:01 HLA-C*18:02 4 common

Usually a common allele is mistyped as a rare allele, and the wrong type is systematically the same rare allele. These mistypings are due to reads from other parts of the
genome, pseudogenes or other HLA genes having similar sequences. However, there are cases when common alleles are mistyped as other common ones: mistyping is
systematic in these cases also.
doi:10.1371/journal.pone.0078410.t003

HLA Typing from 1000 Genomes Data
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Our search algorithm is conceptually similar to those from some

previous studies [5,9] but instead of BLAST and/or gapped

Smith-Waterman alignment we are looking for reads that are able

to align to any of the sequences in the IMGT/HLA database

(version 3.10 10/2012) [13] with no or very few mismatches

(allowing for soft clips at read ends). Any read that could not be

aligned to an allele without indels, or contained too many

mismatches, was discarded. The number of allowed mismatches

was derived from the read length:

ma~0:02(lr{ls)

where ma is the number of mismatches allowed, lr is the

readlength, ls is the length of the soft-clip (if any). Reads were

only aligned to the exons in the IMGT/HLA reference allele

sequences, this allowed us to achieve up to six digits resolution.

After alignment, for each reference allele’s coding sequences the

coverage depth and coverage % values were sorted. In the next step

we filtered allele candidates using all this allele coverage data, and

left only those candidates that have high enough number of reads

covering the allele. This filter discards putative alleles having too few

reads covering the reference and/or having long parts or whole

exons not covered at all. Finally, having narrowed down to only few

dozens of possible individual alleles, we are searching for allele pairs

in a way that we are optimizing for both coverage depth and

coverage %, reporting allele pairs that contain both a high number

of mapped reads and have adequate coverage of exons for both

alleles at each locus. There is a chance that we have more than one

set of pairs containing the same number of reads and coverage

pattern (for example alleles differing only in intronic regions); in this

case we are reporting these as ambiguous candidates.

Figure 6. Difference in HLA-A*03:01:01:01 and HLA-A*03:21N alignments. Both alleles show relatively good coverage, but reads covering
HLA-A*03:21N exon 4 (the distinguishing part between the two alleles) are from other genes and pseudogenes like HLA-H, or HLA-B,C and E.
Mistyping is mostly due to this phenomenon when analyzing whole-exome or whole-genome samples; reads from other regions are brought in as
"alignment noise". This in most cases result in mistyping to a rare allele, though in some unfortunate cases to a different common one. Mistyping
tends to be systematic: valid types are usually mistyped to the same rare allele.
doi:10.1371/journal.pone.0078410.g006

HLA Typing from 1000 Genomes Data

PLOS ONE | www.plosone.org 8 November 2013 | Volume 8 | Issue 11 | e78410



Supporting Information

Table S1 Calculated and measured HLA-A, HLA-B and
HLA-C types for HapMap samples.
(XLS)

Author Contributions

Conceived and designed the experiments: EM. Performed the experiments:

EM KR SJ. Analyzed the data: KR SJ. Contributed reagents/materials/

analysis tools: EM KR TH AB SJ. Wrote the paper: KR TH AB SJ.

References

1. Kilpinen H, Barrett JC (2013) How next-generation sequencing is transforming

complex disease genetics. Trends Genet 29: 23–30.

2. Goulder PJ, Walker BD (2012) HIV and HLA class I: an evolving relationship.

Immunity 37: 426–440.

3. Noble JA, Valdes AM (2011) Genetics of the HLA region in the prediction of

type 1 diabetes. Curr Diab Rep 11: 533–42.

4. Trowsdale J (2011) The MHC, disease and selection. Immunol Lett 137: 1–8.

5. Erlich RL, Jia X, Anderson S, Banks E, Gao X, et al. (2011) Next-generation

sequencing for HLA typing of class I loci. BMC Genomics 12: 42.

6. Lind C, Ferriola D, Mackiewicz K, Heron S, Rogers M, et al. (2010) Next-

generation sequencing: the solution for high-resolution, unambiguous human

leukocyte antigen typing. Human Immunology 71: 1033 – 1042.

7. Lank SM, Wiseman RW, Dudley DM, O’Connor DH (2010) A novel single

cDNA amplicon pyrosequencing method for high-throughput, cost-effective

sequence-based HLA class I genotyping. Hum Immunol 71: 1011–1017.

8. Warren RL, Choe G, Freeman DJ, Castellarin M, Munro S, et al. (2012)

Derivation of HLA types from shotgun sequence datasets. Genome Med 4: 95.

9. Wang C, Krishnakumar S, Wilhelmy J, Babrzadeh F, Stepanyan L, et al. (2012)

High-throughput, high-fidelity HLA genotyping with deep sequencing. Proc

Natl Acad Sci U S A 109: 8676–81.

10. De Santis D, Dinauer D, Duke J, Erlich HA, Holcomb CL, et al. (2013) 16(th)

IHIW : review of HLA typing by NGS. Int J Immunogenet 40: 72–76.

11. Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, et al. (2010) A

map of human genome variation from population-scale sequencing. Nature 467:

1061–73.

12. International HapMap Consortium (2003) The International HapMap Project.
Nature 426: 789–96.

13. Robinson J, Halliwell JA, McWilliam H, Lopez R, Parham P, et al. (2013) The
IMGT/HLA database. Nucleic Acids Res 41: D1222–1227.

14. R Core Team (2012) R: A Language and Environment for Statistical

Computing. R Foundation for Statistical Computing, Vienna, Austria. URL
http://www.R-project.org/. ISBN 3-900051-07-0.

15. Mack SJ, Cano P, Hollenbach JA, He J, Hurley CK, et al. (2013) Common and
well-documented HLA alleles: 2012 update to the CWD catalogue. Tissue

Antigens 81: 194–203.

16. Luo C, Tsementzi D, Kyrpides N, Read T, Konstantinidis KT (2012) Direct
comparisons of Illumina vs. Roche 454 sequencing technologies on the same

microbial community DNA sample. PLoS One 7: e30087.
17. Lunter G, Goodson M (2011) Stampy: a statistical algorithm for sensitive and

fast mapping of Illumina sequence reads. Genome Res 21: 936–9.
18. Horton R, Gibson R, Coggill P, Miretti M, Allcock RJ, et al. (2008) Variation

analysis and gene annotation of eight MHC haplotypes: the MHC Haplotype

Project. Immunogenetics 60: 1–18.
19. Gonzalez-Galarza FF, Christmas S, Middleton D, Jones AR (2011) Allele

frequency net: a database and online repository for immune gene frequencies in
worldwide populations. Nucleic Acids Res 39: D913–9.

20. Flicek P, Ahmed I, Amode MR, Barrell D, Beal K, et al. (2013) Ensembl 2013.

Nucleic Acids Res 41: 48–55.
21. Meyer LR, Zweig AS, Hinrichs AS, Karolchik D, Kuhn RM, et al. (2013) The

UCSC Genome Browser database: extensions and updates 2013. Nucleic Acids
Res 41: D64–69.

HLA Typing from 1000 Genomes Data

PLOS ONE | www.plosone.org 9 November 2013 | Volume 8 | Issue 11 | e78410


