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Abstract 

 
Swarm Intelligence is natural phenomenon that 

enables social animals to make group decisions in 

real-time systems. This process has been deeply 

studied in fish schools, bird flocks, and bee swarms, 

where collective intelligence has been observed to 

emerge. The present paper describes swarm.ai—a 

collaborative technology that enables swarms of 

humans to collectively converge upon a decision as a 

real-time system. Then we present the results of a 

study investigating if groups working as “human 

swarms” can amplify their social perceptiveness, a 

key predictor of collective intelligence. Results showed 

that groups reduced their social perceptiveness errors 

by more than half when operating as a swarm. A 

statistical analysis revealed with 99.9% confidence 

that groups working as swarms had significantly 

higher social perceptiveness than either individuals 

working alone or through plurality vote.   

 

 

1. Introduction  

 
Organizations need to make good decisions [1], 

and the fast pace of business often requires that they 

be made quickly and accurately. Yet, this is 

increasingly challenging in a distributed and data-

saturated workplace [2, 3]. In response, many 

organizations have turned to digital technologies like 

wikis, business intelligence systems, and 

crowdsourcing platforms to improve decision-making 

[4, 5]. Crowds, in particular, have received much 

attention for offering insights and making decisions [4, 

6, 7]. Indeed, research demonstrates that technologies 

enabling crowds of individuals to independently 

provide decisions are able to escape dysfunctional 

social influences [6]. Yet, crowds also have limitations 

as they remain susceptible to social influence, which 

can lead to information cascades that can bias crowd-

generated decisions [8].  

While these technologies can provide valuable 

insights, real-time data, and forecasts, it is often 

humans working in groups that use this knowledge to 

make a decision. Indeed, groups are often defined as 

information processing entities that make decisions 

[9]. How well groups process information directly 

links to their performance [10], yet groups often 

underperform in this regard. To make good decisions, 

groups members must overcome a host of cognitive 

biases [11], combat social influence [12], spend time 

integrating knowledge, and sometimes prevail over 

oppositional organizational structures [3, 13]. Even 

achieving that, groups may still not reach consensus or 

fail to perform adequately. 

Consequently, scholarship has long examined the 

nature of group performance and decision making 

[11]. Recently, the relationship between collective 

intelligence and group performance [14] has 

uncovered promising insights. Between 30-40% of 

group performance on a wide range of tasks, from 

decision-making to mathematical reasoning, can be 

predicted by a group’s collective intelligence [15]. 

Counterintuitively, the average IQ of group members 

is only moderately predictive of a group’s collective 

intelligence. Rather, it is the group’s average social 

perceptiveness that is the strongest known predictor of 

a team’s collective intelligence and performance [15]. 

Groups high in social perceptiveness tend to have 

higher collective intelligence and are better able to 

collaborate and coordinate effectively.  

As the existence of the collective intelligence 

factor has been well established in the literature, 

attention has turned to developing technological tools 

to facilitate, enhance, and measure the collective 
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intelligence of groups [e.g., 4, 14, 16]. Given the 

important role of social perceptiveness in predicting 

collective intelligence, scholars have called for 

research into how social perceptiveness can be altered 

or enhanced [17]. 

This study answers this call by using a novel multi-

agent platform called swarm.ai. This platform is 

modeled after the swarm intelligence present in natural 

systems like schools of fish and flocks of birds [e.g., 

18, 19]. Swarm.ai enables humans to collaborative in 

real-time to converge upon a collective decision. We 

administer a social perception test to 61 groups using 

both plurality vote and the swarm.ai platform. The 

results suggest that swarms of humans working 

together exhibit greater levels of social perceptiveness 

than either individuals operating alone or group 

plurality vote. This provides evidence for human 

swarms to amplify the collective intelligence available 

to a group during decision making.  
 

2. Collective Intelligence  

 
Collective intelligence is studied in various 

contexts, ranging from colonies of ants [18], to crowds 

of humans [6], to collections of AI agents [20]. Recent 

research on the collective intelligence of groups tested 

200 teams on a range of different tasks and found that 

a single, dominate factor explained a large proportion 

of variance in group scores on a variety of tasks [15]. 

Moreover, this factor was able to predict performance 

of more complex tasks in the future. This factor is 

called collective intelligence and encompasses a 

group’s “capacity to perform across a wide range of 

tasks”. The collective intelligence of groups is 

conceived as an emergent property resulting from the 

interaction of bottom-up and top-down group 

processes [21]. 
Bottom-up processes are composed of the 

aggregation of individual group-member attributes 

that facilitate collaboration. Early research on 

collective intelligence was premised on the notion that 

it was a function of the intelligence of individual group 

members (i.e., IQ). Yet, scholars found only moderate 

correlations between intelligence of individual 

members and the collective intelligence of the group 

[22]. Subsequent research has identified several 

compositional features of groups that enable collective 

intelligence. Groups with higher proportion of women, 

higher average social perceptiveness, and moderate 

amounts of cognitive diversity have been found to 

correlate with collective intelligence [15, 16, 23].  

The group’s average social perceptiveness 

(sometimes called social sensitivity or social 

intelligence) is the best known predictor of collective 

intelligence [17]. It is measured through the Reading 

the Mind in the Eyes (RME) test [24], which involves 

viewing photos of people’s eyes and identifying which 

emotions they are expressing. Social perceptiveness is 

a subset of emotional intelligence skills that pertains 

to how well one can accurately represent and process 

information about the mental states of others. 

Individuals high on this trait can perceive and respond 

to subtle nonverbal emotional and interpersonal cues, 

which facilitates interaction and collaboration. This 

trait predicts 30-40% of group performance on tasks, 

even in online environments where there exist limited 

nonverbal cues and groups only communicate via text 

[16].  

Top-down processes, such as group norms and 

structures, also enable the emerge of collective 

intelligence through facilitating effective group 

interactions. However, research in this area is limited 

[14]. Lab studies show that collective intelligence is 

significantly predicted by the total amount of 

communication in a group and equal distribution of 

communication among members [16]. However, these 

findings were not replicated in a field study using 

gaming teams [25]. Interestingly, collective 

intelligence even predicts performance in the absence 

of group communication. A study using a minimum-

effort tacit coordination game explored individual 

decision-making, in which the team gains or loses 

money as a result of the decisions made by its 

members [23]. Notably, these decisions were made 

simultaneously and without communication with each 

other. Yet, teams with a higher collective intelligence 

performed better on the task. 

Finally, collective intelligence emerges from the 

interaction of these bottom-up and top-down processes 

as a part of a system. As Schut [26] explains, collective 

intelligence emerges in systems when agents can (i) 

adapt in response to changes via feedback in an 

uncertain environment, (ii) self-organize 

autonomously based on local interactions, and (iii) 

exhibits emergent behavior in which macro-level 

outcomes are formed through interactions at the 

micro-level. In other words, collective intelligence is 

the emergent property of a complex adaptive system 

(i.e., group) in which agents (i.e. group members) are 

self-organized through local interactions (i.e., bottom-

up and top-down processes) and can adapt to changes 

in the environment. This conceptualization inspires 

scholars to consider how sociotechnical systems can 

be designed to enhance groups, such as designing 

digital environments that structure group interactions 

or amplifying social cues to enhance emotional 

intelligence [17]. 

In summary, groups are central to organizational 

decision-making, yet are subject to cognitive and 



 

 

social influence biases that degrades the quality of 

decisions. Groups with high collective intelligence are 

better able to overcome these barriers and perform 

better at a wide range of tasks, such as decision 

making. A group’s social perceptiveness—the ability 

to read and respond to subtle nonverbal cues—is the 

strongest known predictor of collective intelligence. 

With this in mind, scholars have called for research 

into how social perceptiveness can be enhanced and 

how sociotechnical systems might be designed to 

amplify these traits [17].     

This review motivates a study of the potential of 

groups collaborating as a swarm to amplify the social 

perceptiveness of the group. Just as collective 

intelligence emerges from a complex adaptive system, 

swarm.ai is a platform that enables humans to operate 

as a real-time system to engage in real-time decision 

making. This enables groups to engage in human 

swarming. 

 

3. Human Swarming  

 
Studies of collective intelligence technologies 

predominately focus on crowdsourcing platforms, 

where crowds of humans contribute a decision (e.g., 

vote, star-rating, etc.). The platform aggregates and 

displays the contributions, usually as an average of 

responses or as the most popular response through a 

voting paradigm. However, neither of these options 

are able to capture the real-time dynamics of swarming 

intelligence observed in nature. Rather, crowd-based 

platforms generally enable a series of decisions to be 

made by participants. As these decisions are made 

serially, earlier decisions by some can influence future 

decisions of others through social influence and 

information cascades [8]. 

By contrast, animals like schools of fish, flocks of 

birds, and swarms of bees have been shown to 

deliberate as closed-loop systems that make decisions 

in parallel with each other—they respond and adapt to 

subtle feedback cues from other members in real-time 

to converge upon a decision. For example, schooling 

fish detect vibrations in the water around them while 

swarming bees generate and perceive complex body 

vibrations to deliberate together in systems.  
Humans, however, have not evolved with the 

natural ability to deliberate in real-time, closed-loop 

swarms. However, this is addressed through the design 

of swarm.ai, a software platform that enables 

distributed human groups to connect for the purpose 

of answering questions, making predictions, and 

reaching decisions by working together as closed-loop 

swarms. 

As shown in Figure 1, the swarm.ai platform used 

in this study enables groups of participants to answer 

questions by collectively moving a graphical puck to 

select from among a set of alternatives. Each 

participant provides their individual input by 

manipulating a small graphical magnet with a mouse, 

touchpad, or touchscreen. By adjusting the position 

and orientation of their magnet with respect to the 

moving puck, participants express their individual 

intent on the system. The input from each user is not a 

discrete vote, but a stream of vectors that varies freely 

over time. Moreover, participants can vary both the 

direction of their intent and the magnitude of their 

intent by adjusting the distance between their magnets 

and the puck. 

Because all members of the group can adjust their 

intent continuously in real-time, the swarm explores 

the decision-space as a complex adaptive system. 

Because the graphical puck is in continuous motion, 

users must continually move their magnets to express 

their intent. This is significant, for it requires all 

participants, regardless of group size or composition, 

to be engaged continuously throughout the 

deliberation process, evaluating and re-evaluating 

their intent in real-time. This enables a dynamic 

negotiation among all members, empowering the 

group to collectively consider the options and 

converge on the most agreeable solution. 

  

 
 

Figure 1. A human swarm choosing between 
options in real-time 

 
Thus, like bees vibrating their bodies to express 

sentiment in a biological swarm, the participants in an 

artificial swarm must continuously update and express 

their changing preferences during the decision process 

or lose their influence over the collective outcome. 

This is generally referred to as a “leaky integrator” 

structure and common to swarm-based systems [27]. 

In addition, algorithms monitor the behaviors of 

swarm members in real-time, inferring their relative 



 

 

conviction based upon their actions and interactions 

over time.  This reveals a range of behavioral 

characteristics within the swarm population and 

weights their contributions accordingly, from 

entrenched participants to flexible participants to 

fickle participants. Already, human swarms using this 

platform have significantly increased the predictive 

accuracy of groups across a variety of tasks, from 

betting on sporting events to forecasting financial 

markets [28-32]. Successful swarms have included as 

low as three to over 40 participants. 

There are at least three reasons why swarm.ai is 

useful in this study. First, collective intelligence 

emerges from the interactions of a complex adaptive 

system, which is the kind of system that swarm.ai 

enables. At the macro-level, as it permits participants 

to function as a real-time system that responds to 

changes in the environment (i.e., as the puck moves 

towards a decision). At the micro-level, it permits 

individuals to simultaneously and equally provide 

intent through the direction and magnitude of the 

graphical magnet and movement of the puck.  

Second, swarm.ai can provide a more accurate 

measure of group-level constructs like group social 

perceptiveness. A common limitation of group-level 

research is the reliance of operationalizing a group-

level construct by aggregating data collected at the 

individual-level [33]. This is problematic because 

measurement resides at the individual-level and is 

therefore unable to capture the underlying group 

processes of interest [34]. The design of swarm.ai 

overcomes this limitation because it permits group 

members to collectively converge upon a single 

response as a holistic system. The response in 

inclusive of the group processes present in the team. 

At the same time, the design of swarm.ai permits a 

compelling balance between visibility and anonymity 

that can minimize social influence biases: group 

members can communicate their opinion visually by 

moving the puck, yet their identities remain 

anonymous.  

Finally, swarm.ai leverages the sensitivity that 

humans have to subtle social cues [35]. The movement 

of the graphical puck amplifies the subtle cues that 

communicate the intent of the group. This becomes 

important when recognizing that not all relevant 

knowledge is explicit. Humans possess tacit 

knowledge, insights, experiences, and feelings that can 

be challenging to verbalize with others [36]. Through 

moving the puck, group members can act upon their 

tacit knowledge in forming the collective decision. 

In sum, swarm.ai is a platform designed to enable 

humans to engage in the kind of collective intelligence 

observed in natural swarms. In doing so, swarm.ai 

offers a novel approach to amplifying and measuring 

social perceptiveness. To investigate these assertions, 

we propose the following research question for this 

study: 

RQ1: To what extent does collaborating as a 

human swarm amplify the social perceptiveness of a 

group? 

 

4. Methods  

 
To assess the ability of human swarms to amplify 

the social perceptiveness of groups, a large-scale study 

was conducted across a set of 61 teams, each 

composed of 3 to 6 members, which were already 

engaged in a long-term team project together. In total, 

302 human subjects participated in this study. All were 

college students in business, communication studies, 

and engineering courses, for which the team project 

was a significant component. 
The widely employed “Reading the Mind in the 

Eyes” (RME)  [24] test was used to measure the social 

perceptiveness of these 61 teams. The test includes 36 

questions, each of which provides a facial image 

restricted to a narrow region around the eyes along 

with a set of four options that describe the emotion 

expressed by the person in the image.  Participants are 

asked to identify the emotional state of other people 

based only on their eyes. An example question from a 

standard RME test is shown below in Figure 2.  As 

shown, four options are provided, only one of which 

accurately represents the emotion of the depicted 

individual.   
 

 
 

Figure 2.  Sample question from RME test 

  
Prior studies have shown that the RME test is a 

reliable measure of social perceptiveness, with strong 

internal consistency and test-retest stability 

[37].  Social intelligence is often described as a 

person’s ability to perceive, interpret, and respond to 

the intentions, dispositions, and behaviors of others 

[38, 39]. These skills are extremely important for 

effective decision making, especially by problem-



 

 

solving teams, as understanding and/or empathizing 

with the needs, goals, intentions, and beliefs of others 

is a fundamental skill required of many critical 

decisions made by organizations of all sizes [40]. 
To test whether real-time swarming enabled 

working groups to amplify their effective social 

perceptiveness, a two-stage study was 

employed.  First, each of the 302 study participants 

were administered the RME assessment individually 

through an online survey. To limit bias and knowledge 

of correct answers, individual scores were not shared, 

and discussion of the assessment was discouraged. 
In the second stage, each of the 61 teams were 

administered the RME test through the swarm.ai 

platform such that the group was tasked with 

answering each question as a real-time swarm. Team 

members were discouraged from communicating with 

each other during the assessment, instead relying only 

on the closed-loop interaction afforded by the platform 

(i.e., via pulling the puck). Each team had 60-seconds 

to collaboratively coverage upon an answer. Figure 3 

below is a snapshot of a participant’s screen during a 

response, which represents the pull of each teammate 

through a magnet. It should be noted that to discourage 

conforming to the movement and concentration of 

magnets rather than the puck, participants did not see 

the magnets of other participants during the actual 

swarming session. As the puck moves more slowly 

and subtly than magnets, this permits time for 

individuals to consider their position in relation to the 

overall position of the swarm [17]. Informal 

discussions with the participants indicated that they 

enjoyed and were engaged in the experience. 
 

 
 

Figure 3. Swarming group responding to 
RME question 

 
In sum, the social perceptiveness of groups was 

measured twice: first through aggregating individual 

responses for each team and the second through the 

collective decision of group using the swarm.ai 

platform.  
 

5. Data and Analysis  

 
As noted previously, the RME was administered to 

302 individuals across 61 teams, which produced three 

unique datasets. We received fully completed 

individual assessments from 266 participants (88% 

response rate), totaling over 9,000 item responses. 

These responses were used to calculate individual 

RME scores for each participant. Second, these same 

responses were aggregated by team to generate a 

plurality RME score, which was calculated by 

plurality vote (the most popular answer within a 

group) for each of the 61 teams. The plurality vote 

approximates an aggregation based on the voting 

paradigm embodied in platforms drawing upon the 

‘wisdom of the crowd.’ For questions where the vote 

was split evenly across multiple answers, a “deadlock” 

was determined and classified as an incorrect 

response. This provided a dataset of over 2,500 

plurality vote responses to RME assessment questions. 

Finally, a swarm RME score for each group was 

calculated from the responses collected through the 

swarm.ai platform. For questions where the swarm 

could not converge upon an answer within the 60 

second time limit, a “deadlock” was determined and 

classified as an incorrect response. 
During the analysis of the data, it was discovered 

that responses for question 22 of the swarm RME test 

were improperly labeled. As a result, all responses for 

this question were invalid, thus we dropped question 

22 from both the individual responses and swarm 

responses, meaning the maximum value on the RME 

shifted from 36 to 35.  
 

6. Results 

 
Mean scores and error rates for RME were 

calculated for the individual, plurality, and swarm 

generated scores. As shown in Table 1, the average 

individual RME score was 23.96, which corresponds 

to an error rate of 31.5%.  The average of each team’s 

plurality RME score was 25.92, which corresponds to 

an average error rate of 25.9%.  When enabling the 

teams to work together as a swarm, the average RME 

score increased to 29.65, which corresponds to an 

average error rate of 15.3%.  In other words, by 

working together as a swarm, the 61 groups, on 

average, reduced their error rates by more than half. 

This supports the notion that working as a swarm can 

increase the social perceptiveness, and hence the 

collective intelligence, of groups. 



 

 

 
Table 1. Decision method error rate and 

confidence interval 

 
Testing Method 
(Deadlocks as Errors) 

Mean # 
Correct 

Error 
Rate 

95% 
Confidence 
Interval 

95% 
Difference to 
Swarm CI 

Individual Average 23.96 31.54% [29.9%, 33.2%] [14.0%, 18.6%] 

Plurality Average 28.92 25.94% [22.7%, 29.2%] [7.11%, 14.4%] 

Swarm  29.65 15.29% [13.1%, 17.6%] N/A 

 
Next, the statistical significance of three RME 

assessment methods were calculated using a 10,000-

trial bootstrap analysis [41] of the error rate for each 

method. The 95% confidence intervals and p-values 

were calculated for the difference between individual 

RME scores, plurality RME scores, and swarm RME 

scores. The results show that the swarm significantly 

outperforms both individual (μdifference = 16.3% error, p < 

0.001) and plurality scores (μdifference = 10.7% error, p < 

0.001).  The bootstrapped error comparison is shown 

in Figure 4. 

 

 
  

Figure 4. Bootstrapped average error rate 

 
With respect to deadlocks, a comparison was 

made between the rate of deadlocks determined by 

plurality vote as compared to the rate of deadlocks 

reached by swarms. Across the 61 teams, plurality 

voting resulted in deadlocks in 12% of questions. 

Across those same groups, when working together as 

swarms, the rate of deadlocks dropped substantially to 

0.6% of questions. This is a significant improvement, 

reducing the need for further steps to resolve 

undecided groups.  
In addition, an analysis was performed that 

assumed that deadlocked votes were resolved by 

giving partial credit for tied answers that included a 

correct response: one-half credit for a two-way tie, 

one-third credit for a three-way tie, etc. To balance 

this, deadlocked swarms were given the chance to 

resolve immediately following a deadlock in another 

60-second swarm, with the answer chosen in this 

second round selected as the final answer. There were 

no swarms that deadlocked twice in a row.  
As shown in the Table 2 below, when deadlocks 

were resolved using partial credit, plurality vote had 

an average RME score of 28.23, or an error rate of 

19.3%.  When enabling the swarms to work together 

as real-time systems and resolve their deadlocks in a 

follow-up swarm, the swarm RME score increased to 

29.64, or an error rate of 15.3%.  In other words, even 

when giving partial credit for deadlocks in group 

responses determined by plurality vote, the swarm 

outperformed. 

 
Table 2. Decision method error rate and 

confidence interval, with deadlocks resolved 

 
Testing Method 
(Deadlocks 
Resolved) 

Mean # 
Correct 

Error 
Rate 

95% 
Confidence 
Interval 

95% Difference 
to Swarm CI 

Individual Average 23.96 31.54% [29.9%, 33.2%] [14.0%, 18.6%] 

Plurality Average 28.23 19.33% [17.0%, 21.6%] [1.41%, 7.12%] 

Swarm 29.64 15.29% [12.9%, 17.5%] N/A 

 
To assess statistical significance, a bootstrap 

analysis of the error rate for each method was again 

performed across 10,000 trials. We find that the swarm 

outperforms both the plurality vote (μdifference = 4.0% 

error, p < .002) and individuals (μdifference = 16.3% error, 

p < .001). The bootstrapping of the error rate 

confidence intervals is shown in Figure 5. 
 

 
 

Figure 5. Bootstrapped average error rate 
    

In addition to comparing to the average 

individual, the swarm can be compared to the full 

population. On average, swarms are in the 93rd 

percentile of individuals, indicating that an average 



 

 

swarm scores better than 93% of individuals taking the 

test alone. The histogram of user performance and 

average swarm performance is shown in Figure 6. 
 

 
 

Figure 6. Bootstrapped average error rate 

 

7. Conclusions 

 
The purpose of this study was to answer to the call 

for how digital technologies might be used to amplify 

the collective intelligence of groups [17]. We 

addressed this by measuring the group social 

perceptiveness through plurality vote and human 

swarming. The results show that social perceptiveness 

was significantly higher when measured as a swarm 

than when measured by either individuals or plurality 

vote, with the swarm score scoring in the 93rd 

percentile of individuals. Taken together, this 

indicates human swarms can, in some cases, exhibit 

greater collective intelligence than a group. 

Consequently, human swarms offer a compelling and 

novel way in which organizations might enhance the 

quality and speed of decision-making. These findings 

have important implications for theory and practice. 

First, the results show that humans swarms 

collaborating as a real-time system exhibit higher 

social perceptiveness than when in groups. As social 

perceptiveness is the greatest known predictor of 

collective intelligence, this suggests that swarms can 

perform better on a wide range of tasks and decisions. 

This interpretation is supported by other successful 

applications of human swarms to make surprisingly 

accurate decisions, from predicting sporting event 

outcomes to forecasting financial markets [28-32]. 

Future research can examine further the kinds of 

decisions and tasks that are best suited for human 

swarming. For example, while crowd-based platforms 

often excel in divergent thinking (e.g., the number and 

diversity of ideas generated), swarming may be more 

appropriate for convergent thinking (e.g., narrowing 

down and selecting a single idea). Indeed, this 

provides direction for how human swarms might 

complement crowd-based decision platforms. 

An alternate interpretation of the results is that 

group social perceptiveness is more accurately 

measured by a swarm than through aggregation. This 

is an equally interesting interpretation with promising 

implications for the measurement of multilevel 

constructs such as groups, teams, organizational 

subunits, and entire organizations [42]. Future 

research can investigate swarming as a potential for 

more accurate method of multilevel measurement. 

Second, the design of swarm.ai also provides 

interesting implications. Swarm.ai is a sociotechnical 

system that amplifies subtle social signals such that the 

entire group benefits from a greater level of social 

perceptiveness. This is important as there is limited 

research on how theory-of-mind abilities like 

emotional intelligence and social perceptiveness might 

be trained or enhanced [17]. These findings suggest 

human swarming might be developed as a tool or 

intervention for training people to enhance their 

emotional intelligence.  

Thirdly, the findings suggest that a biomimicry 

approach to designing mass collaborative systems may 

be fruitful. While swarm intelligence is currently used 

in areas like social learning [43] and navigation of 

robots [44], relatively little research has been done to 

extend this concept further into human decision 

making. For example, future research may investigate 

how swarming systems might enable human-AI 

collaboration [45], whereby human and non-human 

agents collaborate together to converge upon optional 

decisions. Additionally, swarming may help to break 

through functional limits of how large a decision-

making group can be. Research shows that after about 

12 group members, coordination costs prevent groups 

from functioning effectively [46]. By contrast, there 

are few, if any, limitations to how many people can 

participate in a swarm—swarm.ai has enabled over 40 

participants to collaborate in real-time. Human 

swarming systems may help to achieve what Malone 

calls a ‘supermind,’ whereby dozens, potentially 

thousands, of people can simultaneously and 

successfully collaborate [47]. The design of such 

collaborative platforms and business intelligence 

systems might be informed from the swarm 

intelligence of natural systems. 

Fourth, the findings suggest that there might limits 

surrounding when groups need to share knowledge 

when making a decision. Indeed, prior studies reveal 

that high levels of collective intelligence can be found 

in teams that do not explicitly communicate with each 

other [23]. Additionally, others found that network 



 

 

patterns of interaction among a team, more so than the 

content of communication, can predict group 

performance [35, 48]. This study contributes to this 

literature by adding that human swarms can be 

successful in an environment with limited linguistic 

interaction, instead relying on the movement of a 

graphical puck to subtly communicate intent. These 

findings introduce important questions about the 

nature and needs of decision making and information 

sharing.  

In addition to these implications, it is important to 

note the limitations of the study. As described earlier, 

it may be that the increased social perceptiveness is the 

result of greater accuracy of this construct. Also, each 

participant viewed the RME questions twice—once 

during the individual survey and once during the 

swarm. While 1-3 weeks lapsed between these two 

assessments and participants did not receive feedback 

on their responses, it is possible that there might be a 

recall bias that can explain the increased performance 

in the swarm. 

In conclusion, this study contributes to the research 

on collective intelligence and group decision making 

by showing how human swarms can, in some 

instances, outperform groups on a social 

perceptiveness task. The results demonstrate how 

humans collaborating as a real-time system can 

amplify the collective intelligence available to group 

and suggests that swarms will perform better on a 

variety of tasks. Future research investigating the role 

of human swarms in the future of work are needed. 
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