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Abstract— Swarm Intelligence (SI) is a biological phenomenon 

in which groups of organisms amplify their combined intelligence 

by forming real-time systems.  It has been studied for decades in 

fish schools, bird flocks, and bee swarms.  Recent advances in 

networking and AI technologies have enabled distributed human 

groups to form closed-loop systems modeled after natural swarms.  

The process is referred to as Artificial Swarm Intelligence (ASI) 

and has been shown to significantly amplify group intelligence. 

The present research applies ASI technology to the field of 

medicine, exploring if small groups of networked radiologists can 

improve their diagnostic accuracy when reviewing chest X-rays 

for the presence of pneumonia by “thinking together” as an ASI 

system.     Data was collected for individual diagnoses as well as for 

diagnoses made by the group working as a real-time ASI system.  

Diagnoses were also collected using a state-of-the-art deep learning 

system developed by Stanford University School of Medicine.  

Results showed that a small group of networked radiologists, when 

working as a real-time closed-loop ASI system, was significantly 

more accurate than the individuals on their own, reducing errors 

by 33%, as well as significantly more accurate (22%) than a state-

of-the-art software-only solution using deep learning.    

I. INTRODUCTION  

Artificial Intelligence has made major advances in the field 
of Radiology in recent years, enabling automated diagnoses of 
medical images that rivals, and in some cases exceeds, the 
accuracy of human practitioners.  For example, the CheXNet 
system developed at Stanford University School of Medicine 
was recently shown to diagnose the presence of pneumonia with 
significantly greater accuracy than expert radiologists [1]. In the 
field of dermatology, researchers recently found that a 
convolutional neural network outperformed a majority of human 
dermatologists tested in diagnosing melanoma [2,3].  And in the 
field of ophthalmology, a recent study by Google Deepmind has 
shown that algorithms trained by machine learning (ML) can be 
as good as human experts in detecting eye conditions [4].  

Results like this have raised concerns in some medical fields 
about the future of the profession for human practitioners.  This 
is particularly true in the field of radiology, where machine 
learning has made significant strides.  This prompted, Geoffrey 
Hinton, a leading AI researcher to famously tell the New Yorker 
magazine last year that medical schools “should stop training 
radiologists now” [5].  These growing concerns, whether they 
prove justified or overblown, raise a significant question – what 
can be done to ensure that human judgement remains a valued 
and consequential factor in fields like radiology? 

  One approach is to use artificial intelligence to amplify the 
diagnostic abilities of human practitioners, rather than replace 
them. While there are numerous paths for exploring this notion, 
the present study looks at one promising technology known as 
Artificial Swarm Intelligence (ASI).  Inspired by the natural 
principle of Swarm Intelligence (SI), this technology connects 
distributed groups of networked human participants into real-
time systems modeled after natural swarms and moderated by 
AI algorithms. In layman’s terms, this technology uses real-time 
networks and AI algorithms to build a “hive mind” of human 
practitioners, enabling the groups to converge on solutions 
together that are significantly more accurate than the individuals 
could achieve on their own [6-10]. In one recent study of ASI 
technology, researchers at Oxford and Unanimous AI tasked 
groups of financial traders with predicting four economic 
indicators: the S&P Index (SPX), the price of gold (GLD), the 
gold miners index (GDX) and the price of crude oil.  Across 
three months of weekly forecasts, results showed a 26% increase 
in prediction accuracy (p<0.001) for the ASI-based predictions 
as compared to individual forecasts [11].  

While prior studies have shown that ASI technology can 
amplify human accuracy in predictive tasks such as predicting 
sports and forecasting financial markets, no prior research has 
tested the use of distributed swarm-based technologies for 
medical diagnosis.  The present study explores the use of ASI in 
the medical field, with a specific focus on diagnostic radiology.  
Specifically, we apply ASI technology to the diagnosis of chest 
x-rays for the presence of pneumonia.  This diagnostic task was 
chosen because evaluating chest x-rays for pneumonia is the 
most commonly performed radiological procedure in the US and 
because machine learning systems like CheXNet have already 
shown that algorithms alone can outperform individual human 
practitioners.  The question thus remains, can small groups of 
networked radiologists, working as a real-time “hive-mind,” 
outperform the software only machine learning systems that 
currently exceeded individual human performance.     

II. SWARMS AS INTELLIGENT SYSTEMS 

When reaching decisions as an ASI system, distributed 
human groups “think together” as a real-time swarm in which 
participants act, react, and interact as a population, converging 
on optimized solutions in synchrony, moderated by intelligence 
algorithms. The swarming process is modeled on biological 
systems such as schools of fish, flocks of birds, and swarms of 
bees. The present study uses Swarm AI® technology from 
Unanimous AI, which is modeled primarily on the collective 
decision-making processes of honeybee swarms [6-10].   



This framework was chosen because honeybee swarms have 
been shown to converge upon optimized solutions to complex 
problems that are far beyond the capabilities of their individual 
members [11]. The decision-making processes in honeybee 
swarms have been found to be surprisingly similar to the 
decision-making in neurological brains [12,13]. Both are 
distributed systems that employ large populations of simple 
excitable units (i.e., bees and neurons) that function in parallel 
to integrate noisy evidence, weigh competing alternatives, and 
converge on decisions in real-time synchrony [14-16]. 

III. ENABLING SWARMS 

Unlike birds, bees and fish, humans have not evolved the 
natural ability to form closed-loop swarms, as we lack the subtle 
connections that other organisms use. Schooling fish detect 
vibrations in the water around them. Flocking birds detect 
motions propagating through the population. Swarming bees use 
complex body vibrations called a “waggle dance.” To enable 
real-time swarming among networked human groups, unique 
interfaces, algorithms, and communication protocols are needed 
to close the loop around the full the set of members. To address 
this need, a software platform called swarm.ai was developed to 
enable distributed human groups, connected in real-time form 
anywhere in the world, to form closed-loop swarms over 
standard internet connections [10].  

Modeled after the decision-making processes of honeybee 
swarms, swarm.ai enables networked groups to work in parallel 
to integrate noisy evidence, weigh competing alternatives, and 
converge on decisions in synchrony. As shown in Figure 1, the 
platform enables “human swarms” to answer questions by 
collaboratively manipulating a graphical puck to select from 
among a set of alternatives. Each participant provides input by 
moving a graphical magnet with a mouse, touchpad, or 
touchscreen. By positioning their magnet with respect to the 
puck, participants apply their will on the system. The input from 
each user is not a discrete vote, but a stream of vectors that 
varies freely over time. Because all members adjust their intent 
continuously, the swarm explores the decision-space, not based 
on the input of any single individual, but based on the dynamics 
of the system. This enables complex deliberations to emerge, 
empowering the group to converge on optimal solutions. 

 

 

 

 

 

 

 

  

 Fig. 1. ASI converging upon a solution as a real-time system 

It is important to note that participants do not only vary the 
direction of their intent, but also modulate the magnitude of their 
intent by adjusting the distance between their magnet and the 
puck. Because the puck is in continuous motion across the 
decision-space, users need to continually move their magnet so 

that it stays close to the puck’s outer rim. This is significant, for 
it requires participants to be engaged continuously throughout 
the decision process, evaluating and re-evaluating their intent. If 
they stop adjusting their magnet with respect to the changing 
position of the puck, the distance grows and their applied 
sentiment wanes.  

Thus, like bees vibrating their bodies to express sentiment in 
a biological swarm, or neurons firing activation signals to 
express conviction levels within a biological neural-network, the 
participants in an artificial swarm must continuously update and 
express their changing preferences during the decision process, 
or lose their influence over the collective outcome.  In addition, 
intelligence algorithms monitor the behaviors of all swarm 
members in real-time, inferring their implied conviction based 
upon their relative motions over time.  This reveals a range of 
behavioral characteristics within the swarm population and 
weights their contributions accordingly, from entrenched 
participants to flexible participants to fickle participants. 

IV. PNEUMONIA DIAGNOSIS STUDY 
 

Researchers at Stanford University School of Medicine and 
Unanimous AI conducted a study in which a “hive mind” of 
eight radiologists connected by ASI swarming algorithms was 
tasked with diagnosing a set of 50 chest X-rays by working 
together as a real-time system. For each of the 50 trials, a chest 
X-ray was presented simultaneously to the radiologists. After a 
few seconds of individual assessment, the group worked 
together as an ASI swarm, converging on a probabilistic 
diagnosis as to the likelihood that the patient has pneumonia. All 
eight radiologists participated from their own unique locations, 
each connecting to the swarm.ai platform through a standard 
internet browser.  For each of the 50 trials, the assessment was 
performed through a two-step process in which the swarm first 
converged on a coarse range of probabilities and then converged 
on a refined value for the probability.  This is shown below. 

 

Fig. 2. ASI in the process of Diagnosing Pneumonia 

 

Figure 2 shows a screenshot of the ASI system in the process 
of selecting the coarse range of probabilities for an X-ray image 
displayed to all participants at the same time.  It’s important to 
note that the screenshot above is a momentary snapshot of the 
system as the collaboratively controlled puck moves across the 
decision-space and converges upon an answer. This full process 
of AI moderated deliberation generally takes between 15 and 60 



seconds.  In the example shown above, the swarm converged on 
the range 40-60% within 18 seconds.   

The swarm was then immediately tasked with selecting a 
specific value within the chosen coarse range.  Figure 3 below 
shows a screenshot of the ASI system in the process of 
converging upon a probability that the patient has pneumonia.  
This generally takes an additional 15 to 30 seconds.  In this way, 
each diagnosis was converged upon by the ASI system in under 
90 seconds for each one of the 50 chest X-ray trials evaluated.   

 

Fig. 3. ASI in process refining a diagnosis 

Following this two-step process, the ASI system captured 
input from the distributed group of radiologists for each of the 
50 trials. Because each participant is both a member of the 
system as well as a source of individual data, their initial input, 
before the swarm starts, was collected as a representation of their 
individual probabilistic forecast.  This enables a performance 
comparison between the individuals, assessing on their own, and 
ASI system converging in synchrony.  

Separately, the same set of 50 chest X-rays were run through 
a state-of-the-art ML system to generate algorithmic assessment 
for the presence of pneumonia. Specifically, the CheXNet deep 
learning software developed at Stanford University was used. 
This is a 121-layer convolutional neural network (CNN). It was 
employed to generate algorithmic probabilities as to whether 
each patient has pneumonia.  In this way, three sets of diagnostic 
probabilities were generated, (a) individual diagnoses, (b) ASI 
diagnoses, and (c) software-only ML diagnoses.  These three 
sets of probabilities were then scored against Ground Truth and 
compared using a variety of statistical techniques. 

V. RESULTS 

We compared the performance of the ASI system against 
both (a) individual human performance, and (b) the software-
only CheXNet system.  When comparing ASI to individual 
radiologist, we compute three metrics - (i) Binary Classification 
accuracy and (ii) Mean Absolute Error, and (iii) F1 scores, also 
known as harmonic mean.  As shown in the figures below, the 
ASI system outperformed the individuals in all four metrics.   

Binary Classification: Using fifty-percent probability as the 
cutoff for classifying a positive diagnosis, the individuals 
achieved 73% diagnostic accuracy (i.e. 27% error rate) against 
Ground Truth across the 50 test cases, while the ASI system 
achieved 82% diagnostic accuracy (i.e. 18% error rate) across 

the same 50 cases. This corresponds to a 33% reduction in errors 
when working as an ASI system as compared to direct individual 
performance. To assess significance, a bootstrap analysis was 
performed on 10,000 samples, as shown in Figure 4a. The swarm 
was found to be significantly more accurate than the individuals 
alone (p<0.01, μdifference = 9.1%).   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4a. Percent Correct (ASI vs Individuals) 

Mean Absolute Error: MAE is calculated as the absolute 
value of the Ground Truth minus the Predicted Probability. A 
bootstrap analysis revealed that the swarm of radiologists had 
significantly higher probabilistic accuracy than the individuals 
(p<0.002, μdifference = 8.6%), as shown in Figure 4b.   

 

Figure 4b. Mean Absolute Error (ASI vs Individuals) 

F1 Score:  We compare the performance of the ASI system 
to individual radiologists on the F1 metric, which is defined as 
the harmonic average of the precision and recall achieved during 
binary classification. As shown in Figure 4c below, we find that 
the ASI system averages an F1 score of 0.75 while the individual 
radiologist achieve a lower average F1 score of 0.64.  To assess 
statistical significance, we bootstrap across 10,000 samples.  We 



find that the F1 score of the Swarm was not sufficiently higher 
than the F1 for individuals for statistical significance (p > 0.05), 
suggesting that a set of 50 trials was not adequate to demonstrate 
statistical significance on F1 scores, which vary substantially in 
average magnitude based on the sample data set.    

 

Figure 4c.  Bootstrapped F1 Scores (ASI vs Individuals) 

When comparing ASI to the ML system, we compute four 
metrics - (i) binary classification accuracy, (ii) Mean Absolute 
Error, (iii) ROC analysis, and (iv) F1 scores.  As shown in the 
figures and text below, the ASI system outperformed the 
software-only deep learning system across all three metrics.   

Binary Classification: Using fifty-percent probability as the 
cutoff for classifying a positive diagnosis, the ML system 
achieved 60% accuracy against Ground Truth across 50 trials, 
while the ASI system achieved 82% accuracy across the same 
50 trials. To assess statistical significance, a bootstrap analysis 
was performed on 10,000 samples as shown in Figure 5a. The 
swarm was significantly more accurate in binary classification 
than the ML system (p<0.01, μdifference = 21.9%).   

 

Figure 5a. Percent Correct (ASI vs ML) 

Mean Absolute Error: MAE is calculated as the absolute 
value of the Ground Truth minus the Predicted Probability. A 
bootstrap analysis of MAE revealed the swarm had significantly 
higher probabilistic accuracy than the ML system (p<0.001, 
μdifference = 21.6%), as shown in Figure 5b.  To address the 
possibility that Ground Truth could be error prone, we also 
looked at “Agreed Truth”, defined as only those cases where the 
ASI and ML systems agreed on the diagnosis.  Even in this 
conservative case, the swarm significantly outperformed ML 
(p<0.001, μdifference = 21.3%), as shown in Figure 5c. 

 

Figure 5b. Mean Absolute Error (ASI vs ML) 

 

Figure 5c. Mean Absolute Error (ASI vs ML) using Agreed Truth 

 

ROC Analysis: Because the Swarm AI system and the 
Machine Learning system have different approaches to 
probabilistic forecasting, a ROC analysis was performed to 
compare the true positive rate to the false positive rate across 
different cut-off points, the higher the ratio the better the 



classification. We computed the Area Under the ROC Curve 
(AUROC) for both methods and found that the swarm of 
radiologists achieved an AUROC of 0.906, while the ML system 
achieved 0.708. Bootstrapping across 10,000 trials, we find that 
the ASI system scores significantly higher than the pure ML 
system (p<0.01, μdifference = 0.197), as shown in Figure 5d.   

 

Figure 5d.  AUROC Analysis (ASI vs ML) 

We can also compare the ASI system to the ML system by 
plotting Receiver Operating Characteristic (ROC). As shown in 
Figure 5e below, the swarm outperforms the ML system across 
most discrimination levels, with higher true positive rates for 
each false positive. In fact, the swarm is able to find all instances 
of pneumonia in this dataset, while only mis-identifying 40% of 
the non-pneumonia cases. The AUROC of the ASI system is 
0.91, while that of ML is 0.71 for this dataset. 

 

Figure 5e.  Receiver Operating Characteristic (ASI vs ML) 

F1 Score:  We compare the performance of the ASI system 
to ML system on the F1 metric. As shown in Figure 5f below, 
we find that the ASI system achieves an average F1 score of 0.75 
while the ML system achieves a lower average F1 score of 0.63.  

To assess significance, we bootstrap across 10,000 samples and 
find insufficient difference (p > 0.05), suggesting that a set of 50 
trials was too small for significant F1 comparison. 

 

Figure 5f.  Bootstrapped F1 Scores (ASI vs ML) 

 

VI. CONCLUSIONS 

We compared the ASI system to both individuals and to the 
state-of-the-art in ML diagnosis of chest X-rays for the presence 
of pneumonia and found that the hybrid ASI system that 
combined real-time human diagnosis and software optimization 
significantly outperformed both the individuals working on their 
own and a pure software system when compared with respect to 
(i) binary classification, (ii) mean absolute error, and (iii) ROC 
analysis.  Because Ground Truth could be error prone, we also 
compared using “Agreed Truth” and still found the ASI system 
to outperform the ML system.  Previous studies on the CheXNet 
system on a larger set of cases [1] achieved a higher AUROC 
(0.7680) as compared to 0.708 in this study, indicating that the 
50 questions in this test set may be harder than average.   
Additional research is warranted using more definitive Ground 
Truth and a wider range of cases. In addition, the method for 
collecting individual responses in this study used only five levels 
of probability (0-20%, 20-40%, 40-60%, 60-80% and 80-100%).  
Future research should be performed that utilizes a higher 
resolution method for individual response mechanism.   

Overall this study suggests that swarm-based technologies 
are quite promising for use in medical diagnosis, enabling small 
groups of medical professionals to combine their insights in real-
time under software moderation and thereby achieve diagnostic 
accuracies that significantly exceed the accuracies of individual 
human practitioners as well as software-only solutions. It is 
likely that the ASI system excels in certain types of cases, while 
the software-only ML system excels in others. We believe future 
research should identify these differences so that each method 
can be applied to those cases which are most appropriate. 

   



ACKNOWLEDGMENT 

     Thanks to Unanimous AI for use of the Swarm.ai platform 

and Stanford University School of Medicine for datasets used 

in diagnostic evaluations.  Special thanks to additional medical 

contributors including Dr Bhavik Patel, Dr Jayne Seekins, Dr 

Francis Blankenberg, Dr David Mong, Dr Timothy Amrhein, 

Dr Pranav Rajpurkar, Dr David Larson, Dr Jeremy Irvin, Robyn 

Ball, Dr Curtis Langlotz, and Dr Evan Zucker. 

REFERENCES 

[1] P. Rajpurkar et al. (Dec. 2017). ‘‘CheXNet: Radiologist-level pneumonia 
detection on chest X-rays with deep learning.’’ 

[2] V J Mar, H P Soyer. Artificial intelligence for melanoma diagnosis: How 
can we deliver on the promise? Annals of Oncology, 2018; DOI: 
10.1093/annonc/mdy193 

[3] H A Haenssle, C Fink, R Schneiderbauer, F Toberer, T Buhl, A Blum, A 
Kalloo, A Ben Hadj Hassen, L Thomas, A Enk, L Uhlmann. Man against 
machine: diagnostic performance of a deep learning convolutional neural 
network for dermoscopic melanoma recognition in comparison to 58 
dermatologists. Annals of Oncology, 2018; 

[4] De Fauw et al. "Clinically applicable deep learning for diagnosis and 
referral in retinal disease". Nature Medicine (2018), 

[5] Siddhartha Mukherjee, A.I. Versus M.D., THE NEW YORKER, Apr. 3, 
2017, http://www.newyorker.com/magazine/2017/04/03/ai-versus-md 
(last visited August 12, 2018). 

[6] Rosenberg, L.B., “Human Swarms, a real-time method for collective 
intelligence.” Proceedings of the European Conference on Artificial Life 
2015, pp. 658-659  

[7] Rosenberg, Louis.  “Artificial Swarm Intelligence vs Human Experts,” 
Neural Networks (IJCNN), 2016 International Joint Conference on. IEEE.  

[8] Rosenberg, Louis. Baltaxe, David and Pescetelli, Nicollo. "Crowds vs 
Swarms, a Comparison of Intelligence," IEEE 2016 Swarm/Human 
Blended Intelligence (SHBI), Cleveland, OH, 2016, pp. 1-4. 

[9] Baltaxe, David, Rosenberg, Louis and N. Pescetelli, “Amplifying 
Prediction Accuracy using Human Swarms”, Collective Intelligence 
2017. New York, NY; 2017. 

[10] L. Rosenberg, N. Pescetelli and G Willcox, "Artificial Swarm Intelligence 
amplifies accuracy when predicting financial markets," 2017 IEEE 8th 
Annual Ubiquitous Computing, Electronics and Mobile Communication 
Conference (UEMCON), New York City, NY, 2017, pp. 58-62. 

[11] Seeley T.D, Buhrman S.C 2001 “Nest-site selection in honey bees: how 
well do swarms implement the ‘best-of-N’ decision rule?” Behav. Ecol. 
Sociobiol. 49, 416–427 

[12] Marshall, James. Bogacz, Rafal. Dornhaus, Anna.  Planqué, Robert. 
Kovacs, Tim. Franks, Nigel. “On optimal decision-making in brains and 
social insect colonies.” Soc. Interface 2009. 

[13] Seeley, Thomas D., et al. "Stop signals provide cross inhibition in 
collective decision-making by honeybee swarms." Science 335.6064 
(2012): 108-111. 

[14] Seeley, Thomas D. Honeybee Democracy. Princeton Univ. Press, 2010.  

[15] Seeley, Thomas D., Visscher, P. Kirk. “Choosing a home: How the scouts 
in a honey bee swarm perceive the completion of their group decision 
making.” Behavioral Ecology and Sociobiology 54 (5) 511-520. 

[16] Usher, M. McClelland J.L 2001 “The time course of perceptual choice: 
the leaky, competing accumulator model.” Psychol. Rev. 108, 550–592 

 

 

 


