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ABSTRACT 

Among aggressive youths with severe mood lability who frequently fail 
to benefit from mood stabilizers and antipsychotics there is a discrete 
subtype called ‘Thermoregulatory Fear of Harm Mood Disorder’ (FOH). 
This disorder is characterized by an underlying thermoregulatory deficit, 
a specific prodromal sequence and a unique constellation of symptoms. 
The underlying problem appears to be a deficit in thermoregulation 
resulting in excessive heat that manifests as thermal discomfort in 
neutral ambient temperatures and moderate to extreme cold tolerance, 
and produces REM sleep-related problems and parasomnias, such as 
night-terrors and hypnogogic hallucinations. Clinically, FOH is associated 
with the advent in childhood of frequent, recurrent, vivid nightmares 
with themes of pursuit and abandonment. The apparent psychological 
sequelae of exposure to this frightening imagery is fear sensitization and 
auto-traumatization. A developmental sequence of fear based defensive 
behaviors arises and includes obsessive bedtime rituals, fear of the dark, 
separation anxiety, contamination fears, hypervigilance, perfectionism, 
misperception of neutral stimuli as threatening, as well as reactive 
aggression in response to limit setting and perceived threat or loss. 
Ketamine, chosen as a potential treatment because of its effectiveness in 
reducing fear sensitization and dose-dependent lowering of body 
temperature in preclinical studies, has been associated with sustained 
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improvement in otherwise refractory youths. We present a detailed 
description of this heritable disorder, link its clinical features to a 
potential disturbance in brain derived neurotropic factor (BDNF) and 
orexin, and indicate how ketamine rapidly affects BDNF through 
multiple mechanisms, to produce a dramatic beneficial response in 
youths with this disorder. 

KEYWORDS: fear sensitization; juvenile bipolar disorder; aggression; 
ketamine; comorbidities 

INTRODUCTION 

This concept paper has three aims. The first is to further describe a 
novel clinical phenotype we call Thermoregulatory Fear of Harm Mood 
Disorder (FOH). The unique constellation of symptoms seen in FOH that 
are associated with fear sensitization can be frequently observed in some 
youths with early onset bipolar disorder [1,2]. These individuals 
experience intense fears related to abandonment, loss, injury and death, 
engage in aggressive behaviors directed toward self or others, undergo 
intense mood fluctuations, frequently require hospitalization and 
generally fail to respond to anxiolytics, antipsychotics, and mood 
stabilizers alone, but may experience sustained benefits from intranasal 
ketamine when combined with lithium salts. The second aim is to present 
a detailed neurobiological model that explains how a physiological 
abnormality—a deficit in thermoregulation—is both a critical etiological 
factor that initiates a prodromal symptom cascade, as well as a reliable 
marker for treatment response. Thirdly, we propose a molecular 
mechanism whereby a change in Bdnf gene expression, known to affect 
the development of fear sensitization and the establishment of a 
thermoregulatory set point, and alterations in orexin/hypocretin may 
underlie the development of this unique psychiatric phenotype. This 
understanding at the molecular level may also provide an explanation 
for the sustained effectiveness of the glutamate receptor antagonist, 
ketamine, in the treatment of this disorder.  

CLINICAL PRESENTATION 

Symptoms, Pathognomonic Features and Prodromal Sequence  

FOH is a recently proposed clinical disorder that has been explored in 
seven published papers [1–7] and awaits independent validation. The 
modal FOH patient is a child between 6–12 years of age, who comes to 
clinical attention because of intermittent, rageful temper tantrums 
during which objects are broken and physical or verbal aggression is 
directed at self or others in response to separation from caretakers, 
unexpected changes in routine, perceived rejection or criticism, attempts 
to set limits or a parental “No” [1,2,4–7]. Clinical assessment reveals an 
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array of symptoms including affective lability with clear periods of 
sadness as well as a brief manic-like state characterized by increased 
goal-directed activity (“mission mode”), talkativeness and irritability if 
thwarted [1,2,4–7]. Comorbid symptoms of anxiety (separation anxiety, 
phobias with possible panic attacks), oppositional defiance, non-suicidal 
self-injury, violent obsession, inattention, impulsivity and features of 
post-traumatic stress disorder (PTSD) are present to varying degrees 
[1,2,4–7]. There are also some highly specific and potentially 
pathognomonic symptoms. The first is a thermoregulatory disturbance in 
which individuals feel uncomfortable (excessively hot, sweating) at 
neutral ambient temperatures and are moderate-to-extremely cold 
tolerant [2–4]. The second is a prominent sleep wake disorder with sleep 
onset insomnia, parasomnias (night-terrors, enuresis, bruxism, sleep-
walking and sleep-talking), REM sleep-related problems (REM intrusions) 
and Nightmare Disorder (vivid, recurrent nightmares with themes of 
pursuit, death and abandonment) as well as morning sleep inertia [3,4,7]. 
The crucial features are the vivid nightmares and night terrors. 
Developmentally, a prodromal sequence of fear-based defensive 
behaviors arises and includes obsessive bedtime rituals, fearfulness of 
intruders, fear of the dark, separation anxiety, germ contamination fears, 
hypervigilence, misperception of neutral stimuli as threatening, and 
reactive aggression in response to limits, perceived threat or loss [2,4].  

Auto-Traumatization 

Our impression is that these individuals auto-traumatize to these 
terrifying nocturnal events and develop a posttraumatic reaction. A 
diagnosis of PTSD requires experiencing a Criterion A trauma defined as 
exposure to actual or threated death, serious injury, or sexual violence, 
which can be experienced, witnessed, or indirectly perceived (e.g., 
learning that the event occurred to a close relative or friend) [8]. 
Individuals with FOH repeatedly experience being severely injured, 
violated or killed in their nightmares, or experiencing doing these things 
to close family or friends [1,2,4,7], which we suspect may be quite 
traumatizing. In addition to experiencing trauma a DSM-5 diagnosis of 
PTSD requires at least 1 Criteria B and C and 2 Criteria D and E symptoms 
[8]. Individuals with FOH generally have: Criterion B intrusive symptoms 
consisting of emotional distress and physical reactivity to traumatic 
reminders; Criterion C avoidance symptoms, particularly attempts to 
avoid sleep; Criterion D negative alterations in cognition and mood, such 
as negative self-appraisal, shame, negative affect, feeling isolated and 
Criterion E alterations in arousal and reactivity including irritability and 
aggression, risky or destructive behavior, hypervigilance, heightened 
startle reactions, difficulty concentrating and difficulty sleeping [1,2,4–7]. 
Hence, a key component of FOH is the emergence during childhood or 
adolescence of an auto-traumatized variant of PTSD in addition to a 
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profound mood disorder, fear-based obsessions, aggressive behaviors, 
sleep disorder and thermoregulatory problems. 

Impairment and Outcome 

This is without doubt an extremely serious disorder. The child’s 
symptoms typical increase to the point that they are no longer able to 
attend school because of their intense fears and have lost all or nearly all 
of their friends. Fifty-five percent of FOH youths in our recently reported 
sample had one or more psychiatric hospitalizations prior to successful 
treatment [4]. They received at various times one or more of the 
following diagnoses: major depression; bipolar disorder; separation 
anxiety disorder; simple phobias; social phobia; generalized anxiety 
disorder; disruptive mood dysregulation disorder; oppositional defiant 
disorder; nightmare disorder; ADHD and obsessive-compulsive disorder. 
Typically, they have been prescribed mood stabilizers (e.g., lamotrigine, 
lithium, oxcarbazepine, topiramate and valproate), atypical 
antipsychotics (e.g., aripiprazole, asenapine, clozapine, fluphenazine, 
olanzapine, quetiapine, risperidone and ziprasidone) and anxiolytics (e.g., 
clonazepam and lorazepam) with minimal benefit [4]. We have reported 
in both acute [6] and long-term [4] case series the clinically beneficial 
effects of intranasal ketamine in this population. After initiation and 
titration of intranasal ketamine they were often able to attend regular 
school, had ceased fighting with parents, were making new friends and 
were on a simpler drug regimen [4]. 

Diagnostic Criteria 

Box 1 presents our latest version of a DSM-like set of diagnostic 
criteria for FOH intended primarily for clinicians who wish to identify 
individuals with this disorder in their patient population, and for 
researchers who wish to further study this proposed diagnosis. Criteria 
include: (A) the presence of a prominent mood disorder with episodic 
and abrupt transitions that fits within the broadest conceptualization of 
bipolar disorder [9]; (B) fear of physical harm with associated emotions 
and perceptions; (C) a characteristic disturbance in thermoregulation 
and heat dissipation; (D) a characteristic disturbance in sleep with 
nightmares and fear sensitization; and (E) reactive aggression directed 
towards self or others. The number of required symptoms within each 
category (and the number of required categories) should be taken as a 
guide that will likely be revised with further study, particularly as FOH 
may be better understood from a dimensional than categorical 
perspective [2]. Participants with FOH in prior studies [1–4,6] were 
diagnosed based on history of DSM-IIIR or DSM-IV bipolar disorder 
(bipolar I, bipolar II or bipolar NOS) and presence of aggressive 
obsessions on the Yale–Brown Obsessive Compulsive Scale (YBOCS) [10] 
(as captured in category B) and measures of extreme physical aggression 
towards self or others on the Overt Aggression Scale (OAS) [11], as 
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captured in category E. About 1/3 youths with pediatric bipolar disorder 
(PBD), or at high risk based on family history, had all, or nearly all, 
symptoms as originally conceptualized and 1/3 had none [11]. This 
suggests that many youths with PBD will have at least some symptoms of 
FOH. Further research is required to understand the prevalence and 
potential therapeutic implications of FOH symptoms in PBD in general, 
particularly alterations in thermoregulation and auto-traumatization 
which may be the most discriminatory features. 

Box 1. Diagnostic criteria for thermoregulatory fear of harm mood disorder in DSM style format. 

A–F are required for diagnosis and must be present most days for at least 6 months, without any symptom 
free periods that exceed 2 months in duration and cause functional impairment in one or more settings 
(e.g., significant behavioral problems at home but not necessarily in the school setting).  

A. Mood Disorder. (Typically characterized by episodic and abrupt transitions in mood state accompanied 
by rapid alternations in levels of arousal, emotional excitability, sensory sensitivity, and motor activity). 

1. Meets DSM-5 criteria for any form of bipolar disorder (bipolar I, bipolar II, mixed episodes, major 
depression with short duration mania, major depression with insufficient criteria hypomania, 
hypomania without major depression, cyclothymia). Manic, hypomanic and mixed episodes are 
defined by DSM-5 symptom criteria but not by DSM-5 duration criteria. 

B. Fear of Harm. (Fear that physical harm will come to self or others; easily misperceives and experiences 
neutral stimuli such as tone of voice or facial expression as threatening; obsessive bedtime rituals; fear of 
the dark; fear of intruders; separation anxiety; contamination fears; hyper-vigilance).  

Three (or more) of the following are required: 

1. Obsessive fears that something awful may happen to self or significant others 
2. Obsessive fears that they will harm themselves or others 
3. Reacts with excessive anxiety and fearfulness in novel situations or with strangers 
4. Reacts with excessive anxiety in situations involving separation 
5. Is self-conscious and feels easily humiliated in social situations 
6. Easily misjudges other people as threatening, intimidating or critical 

C. Thermoregulatory Disturbance. (Experiences thermal discomfort such as feeling hot, or excessively 
sweating in neutral ambient temperature environments, as well as little or no discomfort during exposure 
to moderate or extreme cold, and alternates noticeably between being excessively hot in the evening and 
cold in the morning). 

Two (or more) of the following are required: 
1. Feels excessively warm/hot at bedtime or overheats during the night 
2. Feels cold in the morning having felt hot at bedtime 
3. Feels excessively warm during day in neutral temperatures 
4. Has moderate to extreme cold tolerance (able to go out into the cold without a jacket) 
5. Overheats or sweats profusely with exertion 
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Box 1. Cont.  

D. Sleep Disorder. (Most specifically characterized by highly disturbing nightmares or night terrors 
resulting in fear of going to sleep and auto-traumatization). 

Two (or more) of the following 

Frequent night-terrors or nightmares – often containing images of gore and mutilation 
Fear of going to sleep because of disturbing dreams 
Hypnogogic hallucinations 
Excessively restless sleep 

(Note insomnia/hypersomnia and other parasomnias not included as they are often occur in mood 
disorders without FOH). 

E. Aggression. (Territorial and reactive aggression in response to limit setting and perceived threat or 
loss including aggressive fight-based speech or actions or self-directed aggression such as head 
banging, cutting or scratching self, suicidal thoughts or actions). 

Two (or more) of the following are required: 

1. Excessively aggressive or controlling speech (critical, sarcastic, demanding, “bossy”) 
2. Excessive anger and oppositional/aggressive responses to situations that elicit frustration 
3. Self-directed aggression (head-banging, skin-picking, cutting, suicidal ideations or actions) 
4. Temper tantrums 
5. Often threatens or breaks objects, slams doors, smashes walls 

F. Symptoms are not due to a general medical condition (e.g. hypothyroidism). Criteria may 
overlap with symptomatology from other DSM classifications. 

G. Family history of bipolar disorder. Lends further support to the diagnosis. 

Research Domain Criteria (RDoC) were developed by NIMH to provide a 
means of understanding the nature of mental health and illness in terms of 
dysfunctions in specific psychological/neurobiological systems [12]. RDoC 
was not designed to serve as a diagnostic guide, nor to replace current 
diagnostic systems. However, we thought that it would be helpful for 
researchers if we delineated the RDoC systems, constructs and 
subconstructs that appear to be affected in youths with FOH. These are 
outlined in Table 1 and include nearly all systems, though the major 
alterations appear in the Arousal and Regulatory, Negative Valence and 
Social Processes Systems.  

Table 1. RDoc Domains and Categories (in bold) that Appear to be Implicated in Thermoregulatory Fear of 
Harm Mood Disorder (FOH).  

Domains Categories 

Negative Valence System 1. Frequent, inappropriate and sustained states of Acute Threat (“Fear”) (e.g., in restaurants, 

school or at bedtime). 

2. Characteristically in state of Potential Threat (“Anxiety”) or Sustained Threat when not 

experiencing Acute Threat. 

3. Periods free from Threat are rare and short-lived. 

4. Episodes of extreme Frustrative NonReward–as manifest in temper tantrums and rages.  
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Table 1. Cont. 

Domains Categories 

Positive Valence System 1. Basal state of low Reward Responsiveness and low Reward Valuation. 

2. Occasional brief spontaneous periods of high Reward Responsiveness and high Reward 

Valuation. 

Cognitive System 

Occasional brief spontaneous periods of impaired Cognitive Control in which Goal Selection 

and Response Selection become fixated on a narrow set of goals and actions. 

Social Processes 

1. Disrupted Affiliation and Attachment characterized by overattachment to parental figure, 

deficient affiliation with others and social withdrawal; resulting in limiting and constrained 

friendships. 

2. Impaired Social Communication in which Reception of Facial and Non-Facial 

Communication are misconstrued as threatening or disapproving.  

3. Impaired Perception and Understanding of Others in which the Actions and Mental State 

of others are misconstrued as threatening or disapproving. 

4. Impairment in Perception and Understanding of Self > Self Knowledge characterized by 

unshakable, highly negative or critical thoughts about self (abilities, self-worth). 

Arousal and Regulatory Systems 1. In state of high Arousal, particularly when experiencing Acute Threat. 

2. Oversensitivity to environmental stimuli producing state of high Arousal. 

3. Disruption in Circadian Regulation of temperature / heat dissipation as manifest by feeling 

excessively warm at night and cold in the morning with moderate to extreme tolerance to 

cold and intolerance of heat. 

4. Disruption in Circadian Regulation of temperature as manifest in deficient heat transfer 

from core to proximal extremities while endeavoring to fall asleep, resulting in delayed or 

absent DPG0 during sleep initiation. 

5. Prominent disturbance in Sleep Wakefulness as characterized by difficulty falling asleep, 

difficulty arising, frequent intense nightmares, REM intrusions and other parasomnias. 

Sensorimotor Systems Motor actions match Negative and Positive Valence Systems and Arousal states. 

IDENTIFICATION OF THE PHENOTYPE 

Heritability of Clinical Features in Youths with Bipolar Disorder 

Thermoregulatory Fear of Harm Mood Disorder (FOH) emerged from 
an effort to identify the genetic associates of pediatric bipolar disorder 
(PBD) [5] using an endophenotype approach similar to Cheng et al. [13] 
and Faraone et al. [14]. The Child Bipolar Questionnaire (CBQ) [15], a 65 
item, self-administered, parent report measure derived from Depue  
et al.’s [16] dimensional approach to the identification of adults at risk for 
bipolar disorder, was used to assess the range and severity of symptoms 
seen in a large sample of youths who had been given a community 
diagnosis of bipolar disorder or were at high risk for developing this 
disorder based on an enriched family history [5]. A factor analysis of the 
CBQ was conducted using N = 2795 children who screened positive for 
PBD on the CBQ. The resulting factors were used in a concordance 
analysis between N = 260 proband/sibling pairs and N = 260 
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proband/matched comparison pairs. Factors extracted included: fear of 
harm, depression, aggression, mania, sleep-cycle problems, anxiety and 
executive function deficits. Of the ten factors extracted from the CBQ the 
strongest concordance coefficients (rho) between probands and siblings, and 
the widest contrasts between proband/sibling vs. proband/comparison pairs, 
were for the Fear of Harm factor, that implicates this as an important 
heritable trait [5].  

Fear of Harm Index 

The CBQ was then used to further elucidate FOH in children with 
community diagnoses of PBD or at risk for the illness because of on 
enriched family history (N = 5335). Included were all subjects who 
had >40 positively endorsed CBQ symptom items at frequencies of very 
often, almost always, and always and were diagnosed with all forms of 
PBD (e.g., BPI, BPII and BPNOS). This group was divided randomly into 
two groups, an exploratory group (N = 2668) and a hypothesis testing 
(study) group (N = 2666) [2]. A FOH Index was created using six items 
from the Yale–Brown Obsessive Compulsive Scale (YBOCS) and two items 
from the Overt Aggression Scale (OAS) [11]. The YBOCS items were 
measures of aggressive obsessions (i.e., fear might harm self, fear might 
harm others, fear harm might come to self, fear harm will come to 
others—may be because of something the child did or did not do, fear of 
acting on unwanted impulses and fear they will be responsible for 
something else terrible happening). The OAS items were measures of 
extreme physical aggression (i.e., mutilates self, causes deep cuts, bites 
that bleed, internal injury, fracture, loss of consciousness, loss of teeth 
and attacks others causing severe physical injury). The score consisted of 
the number of YBOCS items rated by parents as occurring “often”, “very 
often” or “almost constantly” and number of OAS items rated 2 or higher. 
It was found that 1/3 met all criteria for the phenotype (FOH index ≥ 7), 
1/3 had no symptoms of FOH (FOH Index = 0), and 1/3 had symptom 
severity somewhere between these extremes. Compared to children with 
PBD who have no or low FOH, children with high FOH had significantly 
higher indices of severity of mania and depression and greater number 
of hospitalizations. The groups did not differ in age of onset, age at first 
diagnosis or age at first hospitalization. FOH therefore constitutes a large 
proportion of children diagnosed with cycling mood disorders who are 
among those that demonstrate the most significant levels of pathology. 

THERMOREGULATION AND SLEEP 

FOH and Temperature Sensitivity 

In addition to the CBQ items that defined behaviors linked to FOH, a 
cluster of symptoms were identified during clinical evaluation that are 
highly suggestive of a disturbance in temperature sensitivity and 
regulation. Patients with FOH were noted to experience thermal 
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discomfort (e.g., feeling hot, excessive sweating in neutral ambient 
temperatures or on exercise) but no discomfort during exposure to 
moderate or extreme cold. Further, they would noticeably alternate 
between being excessively hot in the evening and cold in the morning. 
Individuals with FOH typically wear few layers of clothes in cold 
temperatures, and frequently complain of being hot even when others 
are comfortable. Overheating and the sequelae of peripheral vasodilation; 
facial flushing, deep red, warm pinnae of the ears and dark circles under 
the eyes often accompany “affective storms”, panic or aggressive 
behaviors in response to stressors, which has been labeled as 
psychogenic or emotional hyperthermia [17].  

This unique group of seemingly independent traits, associated with an 
aberrant response to a perceived threat and a disturbance in 
thermoregulation, are considered central to the clinical presentation of 
the phenotype. We believe that the temperature-related symptoms 
associated with FOH are overt manifestations of an impaired ability to 
dissipate heat, particularly in the evening hours near the time of sleep 
onset and thereby interfere with the circadian sleep initiation process as 
well as transitions between sleep arousal states that typically have a 1–2 
h ultradian periodicity [3]. 

Brain Temperature Homeostasis 

This makes sense as temperature has a critical impact on sleep as well 
as on a vast array of other brain functions. The homeostatic imperative 
to maintain core body temperature has been well known since the time 
of Claude Bernard and Walter B. Cannon. However, there is increasing 
awareness that there is also a more specific homeostatic challenge of 
maintaining brain temperature as CNS function can be dramatically 
affected by slight shifts in temperature and the brain is more vulnerable 
to hyperthermic damage than other organs. Further, the brain, like a 
computer CPU, has a tremendous potential to run hot and overheat. Brain 
cells utilize 300–2500 times more energy than the average body cell [18] 
causing the brain to consume 20% and 25% of total body oxygen and 
glucose though it only accounts for about 2% of body weight [19]. Intense 
heat production is an essential feature of brain metabolic activity as all 
energy used for brain metabolism is eventually transformed into heat [18].  

In general, brain regions at rest are about 1 °C warmer than arterial 
blood, though different brain regions maintain different specific 
temperatures [18,19]. Sensory stimuli, such as tail pinch or change in 
cage placement of rats, produces a very rapid ~1–2 °C rise in the 
temperature of specific brain regions and the subsequent increase in 
blood flow may play an important role in cooling as well as increasing 
delivery of oxygen and glucose [18]. Further, natural occurring 
fluctuations in brain temperature affect membrane potentials, burst 
firing rates, and the release and reuptake of neurotransmitters [18]. 
Temperature sensitive neurons, critical for thermoregulation, were 
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initially identified as a discrete population of cells in the 
preoptic/anterior hypothalamus (POA). They have since been identified 
in visual, motor and somatosensory cortex, hippocampus, brain stem and 
substantia nigra [18]. The medial thalamus and suprachiasmatic nucleus 
actual have a greater percentage of thermosensitive neurons than the 
POA [18]. A wide range of sensitivity is achieved through the 
participation of distinct types of channels that are each sensitive to 
narrow yet overlapping ranges in temperature [20,21]. A great deal more 
needs to be learned regarding brain processes responsible for brain 
temperature homeostasis and the clinical consequences that might ensue 
from abnormalities in heat dissipation from the brain. 

Sleep and Body Temperature 

The relationship between sleep and core body temperature however, 
is reasonably well understood. Sleep is governed by both a circadian 
process, most clearly reflected in the ~24-h rhythms in core body 
temperature and melatonin release, and a homeostatic process in which 
sleep debt progressively accumulates during wakefulness and is paid 
down by time spent in restorative slow wave sleep (SWS) [22]. Core body 
temperature decreases during the normal sleep onset period in humans as 
part of the underlying circadian rhythm and sleep further facilitates this 
reduction. The primary mechanism driving the reduction in core body 
temperature is increased blood flow to the skin, which is rich in 
arteriovenous anastomoses that play a critical role in thermoregulation [23]. 
These anastomoses open when noradrenergic vasoconstrictor tone declines, 
shunting blood from arterioles directly into the venous plexuses of the  
limbs [23], promoting greater inflow of heated blood from the core and 
facilitating heat loss to the environment through the skin surface [23,24]. 
This selective vasodilation of distal skin regions promotes the rapid onset 
of sleep and is strongly associated with melatonin secretion [24]. After 
sleep onset, core temperature continues to gradually decline while distal 
and proximal skin temperature remain elevated [24]. Higher measures of 
skin temperature are associated with increased sleep efficiency and time 
spent in SWS [24]. 

Homeothermic animals need to thermoregulate during sleep but 
capacity to do so varies by sleep stage. Shivering during sleep, as a 
defense against cold, is confined to stages 1 and 2. Sweat rate and heat 
dissipation are maximal during SWS. REM sleep is most significantly 
influenced by ambient temperature but during this stage 
thermosensitivity is markedly reduced and there is a delayed onset of 
sweating, decreased sweat rate, diminished evaporative heat loss and 
reduce heat tolerance [24]. To compound matters brain activity during 
REM is metabolically demanding. Previously known as paradoxical sleep, 
REM is characterized by rapid eye movements, cortical activation 
resembling wakefulness, vivid dreaming and skeletal muscle paralysis 
(atonia) [25]. Playing a central role in REM is the subcoeruleus nucleus 
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(part of the locus coeruleus/subcoeruleus complex), which produces REM 
paralysis through glutamineric connections to neurons in the 
ventromedial medulla and spinal cord that inhibit motor neurons 
through the combined action of GABA and glycine [25]. This sleep 
paralysis is critical as otherwise REM would be accompanied by vocal 
outbursts and violent arm and leg movements as seen in REM behavior 
disorder. Hence, both brain and core body temperature increase during 
REM and can pose a hyperthermic challenge if heat is not adequately 
dissipated. Conversely, core body and brain temperature fall to their 
lowest levels during SWS.  

Body Temperature and Waking 

Waking at normal times occurs in conjunction with rising core body 
temperature and falling peripheral temperature [26]. Two ascending 
pathways stimulate wake maintenance. One is a cholinergic pathway 
from the pedunculopontine (PPT) and laterodorsal tegmental (LDT) 
nuclei to the thalamus that activates thalamic relay neurons crucial for 
information transmission to the cortex [22]. These cells are active during 
waking and REM sleep and much less active during NREM. The second 
branch originates from monoaminergic cell groups in the locus coeruleus 
(LC), dorsal and medial raphe, ventral periaqueductal grey (vPG) and 
tuberomammillary (TM) neurons that provide noradrenergic, 
serotonergic, dopaminergic and histaminergic projections to the lateral 
hypothalamus, basal forebrain and throughout the cerebral cortex. These 
neurons are most active during waking, less activity during NREM sleep 
and are silent during REM [22]. The cell groups involved in wakefulness 
are reciprocally interconnected with the ventrolateral preoptic area 
which is primarily active during sleep and releases the inhibitory 
neurotransmitters galanin and GABA. Together these regions function as 
a ‘flip-flop’ switch toggling between sleep and wakefulness. This type of 
self-reinforcing loop produces relatively abrupt transitions between 
sleep and wakefulness but is inherently unstable [22]. Orexin projections 
from the hypothalamus with prominent connections to LC, raphe, vPG 
and TM promote wakefulness and stabilize the system by orchestrating 
the interaction between the various cell body regions involved in 
wakefulness [27]. Loss of orexin neurons in narcolepsy result in unstable 
shifts between wakefulness and sleep as well as bouts of cataplexy that 
stem from the intrusion of the REM sleep paralysis mechanism into 
wakefulness [25]. 

One might assume that alertness would be optimal shortly after 
awakening due to diminished sleep debt. That however is not the case as 
there is a significant degree of sleep inertia following waking that 
persists from minutes to hours. Interestingly, the decline in subjective 
sleepiness correlates very strongly with the rate at which the extremities 
cool and heat transfers from the periphery to the core in a process that 
mirrors the shift in temperature during sleep initiation [26].  
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Impaired Regulation of Nocturnal Temperature and Sleep in FOH 

The presence of a thermoregulatory disturbance was confirmed in 
children with FOH via thermal skin patches placed on the child’s lower 
left calf (distal) and subclavicle region (proximal) prior to and following 
sleep onset, which was assessed using actigraphs [3]. The key metric was 
the distal-to-proximal (DPG) thermal gradient defined as distal-minus-
proximal temperature. This gradient has been validated as a measure of 
heat dissipation and it is well-known that distal temperature is lower 
than proximal temperature prior to sleep, that distal temperature rises 
and proximal temperature falls and that distal temperature generally 
exceeds proximal temperature until shortly before awakening. 
Interestingly, the point where proximal and distal temperatures meet 
and cross over (DPG0) is highly coincident with sleep onset and plays an 
important permissive role in sleep initiation and awakening [28–31]. 
Proximal temperatures in children with FOH tended to run high 
throughout much of the night, delaying the onset of DPG0 by nearly an 
hour and in some children with FOH DPG0 failed to occur at any time [3]. 
In short, children with FOH appear to have a problem dissipating heat 
during the night and this disturbance was associated with delayed sleep 
onset, and serves as a risk factor for REM intrusions, nightmares, 
parasomnias and morning sleep inertia. We consider this 
thermoregulatory deficit a potential biomarker for FOH with possible 
causal implications. 

These findings are consistent with our hypothesis that alterations in 
neural processes that underlie thermal regulation sets the stage for the 
development of sleep disorders, fear sensitization and poor modulation 
of aggression and other survival-based behaviors that are the manifest 
phenotypic features of FOH. Disturbances in all of these functions may be 
linked to a compromised orexin system that no longer provides 
appropriate regulation of the expression of these behaviors, nor 
smoothly executes survival based homeostatic functions [32]. Indeed, 
many of the aberrant behaviors seen in youths with FOH, for example 
separation anxiety and fear based aggressive responses to perceived 
threat, are best understood as responses to existential threat. Individuals 
with these phenotypic features appear to have a very similar pattern of 
response to psychopharmacological treatments, suggesting that this is a 
relatively homogeneous disorder with a common molecular basis.  

FOH AND THERAPEUTIC RESPONSE 

First Line Treatment versus Ketamine 

Although FOH was initially recognized as a severe variant of juvenile 
onset bipolar disorder it became clear that individuals fitting this clinical 
description rarely experienced a meaningful clinical response to  
first-line treatments including atypical antipsychotics and mood 
stabilizers. Ketamine was selected as a tertiary treatment for these 
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severely ill and refractory youths based on success in adults with 
refractory mood disorders [33] and because of its effectiveness in 
reducing fear sensitization and dose-dependent lowering of body 
temperature in preclinical studies [34,35]. Remarkably, almost all 
experience a robust and sustained clinical response to intranasal 
ketamine administered approximately every 3 days. Indeed, we recently 
reported in a detailed assessment of individuals receiving extended 
treatment with intranasal ketamine for FOH, that these individuals were 
currently taking an average of 3 psychotropic medications prior to 
ketamine [4]. Overall, 80% were taking one or more atypical 
antipsychotics, 60% mood stabilizers, 29% antidepressants and 17% 
anxiolytics. Despite these treatments, they were seen as severely ill 
(Clinical Global Impression = 5.7 ± 0.7), with 10 of 48 patients rated as 
“amongst the most severely ill” by at least one of the two raters, and 53% 
had one or more psychiatric hospitalization prior to initiation of 
ketamine. Following ketamine, 21% were rated as very much improved 
and 67% were rated as much improved, with no subsequent 
hospitalizations over a more than 2 year follow up period [4].  

To date we have restricted treatment with intranasal ketamine to 
youths with clear features of FOH and do not know how efficacious 
ketamine would be in refractory youths with bipolar disorder but 
without FOH. Overall, there is a pressing need for randomized, double-
blind, placebo-controlled trials of ketamine in refractory PBD both with 
and without FOH. 

It is important to note that the effects of ketamine were holistic and 
not limited to effects on mood. Indeed, an almost immediate effect of 
intranasal ketamine is to foster heat dissipation and patients often notice 
facial flushing, reddening and warming sensation in the pinna of the ears, 
and that the soles of their feet become quite warm during treatment. 
Effectively treated individuals typically lose much of their cold tolerance 
and the return of heat sensitivity and cold tolerance over the next few 
days heralds their need to receive another ketamine treatment in order 
to maintain benefits. Overall, pre-post differences in ratings were 
strongest for the factor that included the core FOH phenotypic features 
[4]. Hence, understanding the mechanism of action of ketamine may 
provide insight into the pathophysiology of FOH. 

Direct Effects of Ketamine 

Initial reports of a rapid and sustained antidepressant effect of 
ketamine, and subsequent studies showing its benefits in treatment 
refractory depression, anxiety, bipolar disorder, PTSD and suicidality 
[33,36–39], has stimulated a great deal of interest in the potential 
mechanism of action. Briefly, ketamine is a 50–50 racemic mixture of R- 
and S- optical enantiomers that act as non-competitive N-methyl-D-
aspartate (NMDA) receptor antagonists. The simplest theory is that 
ketamine works through direct NMDA receptor inhibition. Interestingly, 
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while ketamine would be expected to block excitatory glutamatergic 
neurotransmission via NMDA inhibition, it actually increases prefrontal 
cortical activity in healthy volunteers; likely due to a preferential 
inhibition of NMDA receptors located on GABAergic interneurons leading 
to a disinhibition of pyramidal neurons and enhanced glutamatergic 
firing [40]. In addition, ketamine blocks extra-synaptic NMDA receptors 
which are tonically activated by low levels of ambient glutamate [40] and 
it inhibits NMDA receptor-dependent burst firing activity of the lateral 
habenula, which is associated with depressive symptomatology [41]. 
However, while these actions may contribute to ketamine’s 
antidepressant effects it appears that these are not the primary 
mechanism of action. We know this, in part, because other NMDA 
channel-blocking antagonists do not provide antidepressant effects of 
comparable magnitude, immediacy or duration [40]. Similarly, there is 
reasonable evidence that the R-enantiomer of ketamine has a superior 
and longer lasting antidepressant effect then the S-enantiomer, though 
the later has a 4-fold higher affinity for the NMDA receptor [40]. Further, 
deuteration of ketamine at the C-6 position, which does not affect NMDA 
receptor binding, but does inhibit conversion to (2S,6S;2R,6R)-
hydroxynorketamine (HNK), blocks its antidepressant effects in animal 
models, suggesting that this metabolite is an essential component. 
Consistent with this finding is the observation that (2R,6R)-HNK is a more 
effective antidepressant than (2S,6S)-HNK, though the R enantiomer does 
not appear to have any effect on NMDA receptors at therapeutic doses 
[40]. Rather enantiomers of HNK appear to facilitate signaling through 
the α-Amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) 
glutaminergic receptor, which are the primary receptors responsible for 
the transduction of fast synaptic neurotransmission in the brain [40].  

Downstream Effects of Ketamine on Brain Derived Neurotrophic 
Factor 

Although ketamine and its HNK metabolite have a multitude of direct 
effects at least four of these exert convergent downstream effects on 
brain derived neurotrophic factor (BDNF). The disinhibition of glutamate 
release through ketamine’s effect on GABAergic interneurons stimulates 
post-synaptic AMPA receptors that are also facilitated by (2S,6S;2R,6R)-
HNK resulting in enhanced release of BDNF [40]. Further, ketamine 
inhibition of extrasynaptic NMDA receptors, which are tonically 
activated by low levels of ambient glutamate, serves to disinhibit 
phorphorylation of eukaryotic elongation factor 2 kinase (eEF2K) 
resulting in an increase in protein translation in general and BDNF 
translation in particular [40]. Similarly, (2R,6R)-HNK also suppresses 
eEF2K phosphorylation and increases BDNF translation through a non-
NMDA mediated mechanism [40]. The net result is that within minutes 
ketamine produces a marked and sustained increase in BDNF levels. 
Antidepressants also produce an increase in BDNF but only after several 
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weeks of treatment. Blocking the effects of ketamine on BDNF, or the 
downstream molecular effects of BDNF, blocks antidepressant response 
to ketamine in animal models [40]. Hence, this is likely a key effect of 
ketamine and leads in turn to the question regarding the relationship 
between BDNF and the phenotypic features of FOH. 

BRAIN DERIVED NEUROTROPHIC FACTOR AND FOH 

Function and Structure of BDNF 

BDNF is a critically important protein that is synthesized and released 
by neurons in the brain and cells in the periphery. It exerts a vast array 
of effects that depend on location and stage of development. During 
development BDNF supports neuronal survival, growth and 
differentiation while promoting connectivity, neuroplasticity, 
neurogenesis as well as synapse, spine and dendrite formation in the 
mature brain. BDNF acts within minutes to enhance glutamatergic and 
reduce GABAergic synaptic transmission in CNS neurons [42]. Chronic 
exposure to BDNF enhances the formation and functional maturation of 
glutamatergic and GABAergic synapses [42] and has widespread effects 
on the serotonin systems [43,44]. It also plays a critical role in cycling of 
synaptic vesicles in rapidly firing neurons and is a crucial mediator of 
long-term potentiation (LTP) in multiple brain regions [42]. 

The human Bdnf gene has a complex structure consisting of 11 exons 
in the 5′ end and nine promoters [45,46]. The coding sequence resides in 
exon 9, with eight upstream promoters regulating regional and cell-type-
specific expression [46,47]. Each of the different Bdnf transcripts encode 
the exact same BDNF protein [45,46]. However, the selective expression 
of distinct Bdnf transcripts, that are specific to various tissues or cell 
types and responsive to different stimuli, explains how BDNF can 
effectively mediate such a wide array of behavioral and molecular 
functions [44]. 

As indicated above FOH is characterized by a deficit in 
thermoregulation, sleep disturbance, extensive periods of depression and 
brief periods of mania, intense fear-based obsessions, aggression towards 
self and others and characteristic features of PTSD. Many youths with 
FOH also experience carbohydrate craving. There is good support for 
BDNF playing a role in all of these aspects of the disorder. 

BDNF and Thermoregulation 

Translational studies indicate that BDNF is involved in two key 
aspects of thermoregulation. First, BDNF in the anterior hypothalamus 
has been reported to play an essential role during a critical 
developmental phase in the fine-tuning of a thermal-response set point in 
chickens [48]. Antisense attenuation of Bdnf in this region at this critical 
stage produces an enduring deficit in thermoregulatory capacity [48]. 
The critical step involves the epigenetic methylation and histone 
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modification of Bdnf gene promoters in the hypothalamus [49,50]. 
Presumably specific epigenetic modifications to Bdnf promoters during 
this critical period serve to regulate the emerging balance between warm 
and cold sensitive neurons in this region [48]. Second, these warm-
sensitive neurons (WSNs) within the mammalian preoptic hypothalamus 
function to orchestrate the homeostatic response to heat [51] as their 
optogenetic excitation triggers rapid hypothermia, mediated by 
reciprocal changes in heat production and heat dissipation, as well as 
dramatic cold-seeking behavior [51]. BDNF likely plays an import role in 
their function as these neurons are molecularly defined by their co-
expression of BDNF and pituitary adenylate cyclase-activating 
polypeptide (PACAP) [51].  

BDNF and Sleep 

Both clinical and translational studies show that BDNF plays a crucial 
role in the homeostatic regulation of REM and non-REM (NREM) slow-
wave sleep (SWS). First, translational studies show that the homeostatic 
increase in sleep pressure for restorative SWS that builds during 
wakefulness is further moderated by the amount of exploratory behavior 
and cortical activation that occurs during this time, and that this is 
mediated by the degree of cortical BDNF expression [52–54]. More 
specifically it appears that activity-dependent BDNF expression increases 
sleep pressure by acting through tropomyosin receptor kinase B (TrkB) 
receptors on a subset of cortical and hippocampal GABAergic 
interneurons that express the neuropeptide cortistatin, which plays a critical 
role in regulating cortical inhibitory balance and degree of SWS activity 
[55,56]. Mice in which TrkB was selectively deleted from cortistatin-
expressing interneurons sleep less and due to insufficient cortical inhibition 
become hyperactive and develop spontaneous seizures [56]. 

Second, translational studies indicate that BDNF also plays an 
essential role in the homeostatic regulation of REM sleep through a 
similar mechanism. Selective REM deprivation leads to an increase in 
BDNF protein expression in the pedunculopontine tegmentum (PPT) and 
the subcoeruleus nucleus (SubC) that regulate REM sleep, but not in the 
medial preoptic area, which regulates NREM sleep [57]. The increase in 
REM rebound following REM deprivation requires BDNF stimulation of 
TrkB receptors [58,59]. More detailed molecular analysis reveals that 
BDNF activation of TrkB receptors promotes extracellular-signal-
regulated kinase 1 and 2 (ERK1/2) activity in cholinergic neurons within 
the PPT which, in turn, leads to the transcription of the Bdnf gene [60]. 
Pharmacological inhibition of s1/2 activation in the PPT prevents REM 
rebound and suppresses BDNF expression [60]. Orexin, in turn, serves as 
the master regulator of sleep/wakefulness states. 

These findings are supported by clinical studies. In particular a very 
recent study by Deuschle et al. [61] measured morning serum BDNF 
levels followed by sleep polysomnography in a significant number of 
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participants with either primary insomnia, restless legs syndrome, 
idiopathic hypersomnia or narcolepsy as well as healthy controls. Across 
all disorders low BDNF levels were associated with a low percentage of 
SWS and REM sleep [61] consistent with translational studies indicating 
the importance of BDNF in generating the homeostatic drive for SWS and 
REM. Conversely, full or partial sleep deprivation, which increases sleep 
pressure and has been reported in several studies to produce a rapid 
reduction in depressive symptoms, leads to a rapid increase in BDNF 
levels [62]. This is highly consistent with preclinical findings and 
indicates that the rapid antidepressant effect of sleep deprivation and the 
rapid antidepressant effect of ketamine are both mediated by increasing 
levels of BDNF [62]. 

BDNF and Mood Disorders 

There is strong clinical as well as translational support for an 
important role of BDNF in both depression and bipolar disorder [63]. 
First, as reviewed above there is compelling preclinical support for BDNF and 
its primary receptor TrkB as essential components in the mechanism of 
antidepressant action of ketamine [40] as well as in the mechanism of action 
of traditional antidepressants [64,65], electroconvulsive therapy [64,65], sleep 
deprivation [62] and exercise [66]. Similarly, genetic manipulations of the 
BDNF/ERK kinase pathway alters affective-like behaviors in mice in multiple 
ways, with most changes consistent with manic-like behavior [67]. Second, 
there is good evidence that peripheral BDNF levels are reduced in patient 
with major depression, though this may be moderated by severity and 
history of abuse or neglect [68–70]. Similarly, there is good evidence for 
reduced peripheral BDNF levels during depressed, manic and mixed 
phases of bipolar disorder [71–74] though this also may be moderated by 
degree of exposure to traumatic events [75]. More definitively, there is 
also evidence for reduced BDNF and TrkB mRNA expression in specific 
brain regions of post-mortem samples from individuals who had 
unipolar and bipolar disorders [76–78].  

Pandey et al. [79] studied this association in PBD and found decreased 
levels of BDNF in platelets and decreased BDNF expression in 
lymphocytes in N = 26 unmedicated youths with PBD versus N = 21 
controls. Moreover, BDNF measures increased to near normal levels after 
8-weeks of treatment (N = 19). On the other hand, more recent studies 
have not found differences in BDNF serum levels between PBD and 
controls [80–82] nor an association between BDNF levels and symptoms 
of mania or depression [83]. These studies though did report associations 
between BDNF in serum and inflammatory markers [83], amygdala 
volume [81], risk factors for cardiovascular disease and measures of 
executive function [82]. They do not however, refute Pandey et al. [79] as 
they measured BDNF in serum versus lymphocytes and participants in 
these latter studies could be euthymic or medicated.  
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What is less consistent in clinical studies is the relationship between 
BDNF levels and clinical response. Some studies have reported a 
significant rise in BDNF levels with successful treatment [79,84] but other 
studies have not [85] or found no relationship between degree of rise and 
clinical response [86]. There are also several inconsistent reports 
regarding the relationship between the Val66Met functional 
polymorphism of BDNF and risk for mood disorders or prediction of 
antidepressant response [87–97]. It seems likely, at this point, that 
reduced BDNF levels in individuals with mood disorders does not 
generally arise from a specific polymorphism but may stem from 
genotype dependent environmental effects (particularly childhood 
maltreatment) leading to epigenetic modifications to promoters 
regulating different slice variants of Bdnf [98–110]. A key question in FOH 
is whether the potentially auto-traumatizing effect of frequent intensely 
disturbing nightmares acts as a form of childhood adversity that results 
in new or additional epigenetic alterations to the Bdnf gene. 

BDNF and Fear 

Fearful obsessions and defensive fear-based behaviors are hallmarks 
of this disorder. Both the formation and the extinction of fear memories 
requires Bdnf gene expression and activation of its high-affinity TrkB 
receptor [111,112]. FOH may be similar to PTSD in that the formation of 
fear based emotional memories appears to be intact but the ability to 
extinguish fear memories is severely impaired [111,113]. An overall 
defect in BDNF expression would affect consolidation as well as 
extinction suggesting that FOH and PTSD are associated with more 
circumscribed alterations in BDNF signaling.  

Briefly, there are three key components to the fear circuit 
[112,114,115]. The first is the amygdala, particularly the basolateral 
nucleus, central nucleus and intercalated cells which together serve as 
the fear acquisition and expression hub. The second is the prelimbic and 
infralimbic subdivisions of the medial prefrontal cortex, which are 
respectively involved in the expression and extinction of fear memories. 
The third is the hippocampus which modulates these prefrontal regions 
and helps provide contextual information [112,114–116]. The prelimbic 
subdivision promotes fear by activating the basolateral nucleus, which 
stores fear-based associations, and has excitatory projections to the 
central nucleus. In contrast, the infralimbic portions projects to the 
intercalated cells and lateral division of the central nucleus, which 
contain GABAergic neurons that inhibit the output neurons of central 
nucleus [112,114,115]. There are also reciprocal connections between the 
basolateral nucleus and prelimbic cortex that become active during 
states of high fear and between basolateral nucleus and infralimbic 
cortex that are active during extinction [112,117]. Coordinated 
electrophysiological oscillations and neuronal synchrony facilitate 
communication between these regions and regulates synaptic plasticity. 
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States of high fear and anxiety are associated with increased theta power 
and synchrony between hippocampus, prefrontal cortex and amygdala, 
whereas extinction is characterized by decrease in phase synchrony and 
after successful extinction, with shift in directionality so that prefrontal 
theta oscillations now ‘lead’ amygdala theta oscillation [118,119]. 

BDNF signaling and regulation of synaptic plasticity are critically 
involved in all components of the fear circuit. Behavior deficits from 
impaired BDNF signaling depend upon the brain regions affected [112]. 
Decreasing BDNF signaling in the amygdala significantly impacts fear 
learning and consolidation [112,120–122] as does a deficit in prelimbic 
BDNF [123]. In contrast, diminished BDNF signaling in HPC or infralimbic 
cortex is associated with impairments in fear extinction [124,125].  

Specific polymorphisms in the Bdnf gene can also lead to a selective 
deficit in fear extinction. For example, females are twice as likely to 
develop PTSD as males and female mice are more resistant than males to 
fear extinction. This appears to be due to increased DNA methylation of 
Bdnf exon IV and a concomitant decrease in mRNA expression within the 
medial prefrontal cortex [113]. Similarly, Bdnf-e4 mice, in which the 
activity-dependent promoter in exon IV is disrupted, have impaired fear 
extinction and decreased hippocampal–medial PFC theta phase 
synchrony during extinction learning [126]. Conversely, exposure during 
adolescence to predictable chronic mild stress facilitates fear extinction 
and this appears to be related to increased BDNF/ERK1/2 signaling in 
infralimbic cortex in adulthood resulting from decreased DNA 
methylation of the Bdnf gene at exons IV and VI. 

Clinical studies are also consistent with translational studies in 
showing that individuals with the low expression Val66Met single 
nucleotide polymorphism of Bdnf have impaired ability to extinguish 
learned fears [127], a diminished response to extinction-based therapies, 
and enhanced risk for developing fear-related disorders such as PTSD 
[128–130]. The Val66Met polymorphism is associated with reduced 
activity-dependent secretion of mature BDNF (mBDNF) [131,132] and it 
has been proposed that the corresponding decrease in mBDNF 
bioavailability results in reduced BDNF–TrkB-dependent signaling that 
affects the development of fear circuit plasticity during a sensitive period 
in early adolescence such that alterations in BDNF expression exert a 
persistent impact on fear behaviors and fear-related disorders [133].  

However, that specific molecular mechanism has recently been 
challenged by the finding that the BDNF prodomain, which is cleaved off 
from BDNF along with mBDNF, is also secreted in an activity-dependent 
manner from neurons [134]. Further, it is structurally modified by the 
presence of the Met 66 amino acid and serves as a potent ligand that 
triggers disassembly of mature mushroom spines on ventral 
hippocampal CA1 neurons that project to prelimbic cortex and eliminates 
synapses by mobilizing actin regulators [134]. The net molecular effect of 
the BDNF Met prodomain is to keep the projections from ventral 
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hippocampal CA1 to prelimbic cortex in an immature developmental 
state thus attenuating their capacity for subsequent circuit modulation 
necessary for fear extinction [135]. Hence, the consistent cross-species 
effect of the BDNF Val66Met polymorphism on anxiety may not be due to 
reduced BDNF activity dependent release but to a specific pro-anxiety 
effect of the BDNF Met prodomain. 

BDNF and Aggression 

Most of what we know regarding the role of BDNF in aggression 
comes from preclinical studies. In one of the earliest reports, Lyons et al. 
(1999) [43] found that heterozygous BDNF(+/−) mice with reduced BDNF 
levels developed prominent intermale aggression, hyperphagia and 
weight gain, which were attributable to alterations in the expression of  
5-HT receptor subtypes in the cortex, hippocampus, and hypothalamus 
and could be ameliorated by administration of selective serotonin 
reuptake inhibitors. Further studies showed that conditional knockout 
mice in which BDNF expression was disrupted either prenatally or 
postnatally became dramatically hyperactive and aggressive. BDNF 
depletion from the fetal brain had more pronounced effects on 
aggression and was associated with deficits in 5-HT(2A) receptor content 
in medial frontal cortex [136].  

In general, Bdnf heterozygote knockouts or mice with forebrain-
restricted full Bdnf deletions show elevated aggression, but also 
experience other changes such as increased anxiety [137]. Another 
important means of studying selective effects of Bdnf alterations is to 
produce mutant mice in which BDNF production from one of the major 
promoters (e.g., I, II, IV, or VI) is selectively disrupted. Mice with promoter 
I or II disruptions (Bdnf -e1 and -e2) displayed heightened aggression, 
increased sexual behavior, alterations in serotonin signaling [44] and 
hyperphagia [138]. In contrast, Bdnf -e4 and -e6 mutants were not 
aggressive or hyperphagic but displayed widespread impairments 
associated with GABAergic gene expression [44]. 

Clinical studies have reported a significant association between 
peripheral BDNF levels and aggression in a small sample of unmedicated 
participants with Obsessive-Compulsive Disorder and healthy controls [139] 
and in individuals with amnestic mild cognitive impairment or 
Alzheimer’s disease [140]. The association between Val66Met 
polymorphism and aggression however is unclear. One study reported a 
significant association between number of BDNF 66Met alleles and overt 
aggression scores in patients with schizophrenia [141]. Another reported 
a significant G × E interaction in which childhood participants in the 
large Avon Longitudinal Study who affiliated with aggressive peers at 
age 10 showed increased risk for aggression at age 15 if they carried the 
BDNF Met-Met variant compared to Val-Val wildtype [142]. On the other 
hand, two studies failed to find a significant association between 
Val66Met polymorphisms and aggression in individuals with 
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schizophrenia [143,144]. This lack of consistency is not surprising given 
the complexity of human aggression, reliance on peripheral BDNF 
measures that can be problematic [145] and focus on the Val66Met 
polymorphism as we are unaware of any reports of increased aggression 
in mutant mice engineered to mimic this polymorphism. 

BDNF, Orexin/Hypocretin and FOH 

Overall, there is a wealth of data linking the beneficial psychiatric 
effects of ketamine to BDNF and altered BDNF levels within specific brain 
regions to the phenotypic features of FOH. We suspect however that the 
story does not end here, and a critical question remains as to why do 
alterations in BDNF levels within these regions produce this array of 
symptoms? Our leading hypothesis is that the orexin/hypocretin (orx/hcrt) 
system is also fundamentally involved and interacts with BDNF-TrkB to 
regulate these behaviors. Briefly, orx/hcrt neurons, colocalized with 
glutamate and other co-transmitters are expressed in a limited region of 
the hypothalamus comprised of the dorsal-medial hypothalamus (DMH), 
lateral hypothalamus (LH) and perifornical area (PFA) [146] but 
innervate a wide array of regions. Orexin 1 receptor mRNA is 
preferentially located in locus coeruleus, prefrontal and infralimbic 
cortex, hippocampus (CA2) and anterior hypothalamus. Orexin 2 
receptor mRNA is located in the tuberomammillary nucleus, arcuate 
nucleus, dorsomedial and lateral hypothalamus, paraventricular nucleus, 
hippocampus (CA3) and medial septal nucleus [147]. Both receptor 
mRNAs can be found in the amygdala, bed nucleus of the stria terminalis, 
paraventricular thalamus, dorsal raphe, ventral tegmental area and 
laterodorsal tegmental nucleus (LDT)/pedunculopontine nucleus (PPT) 
[147,148]. The orx/hcrt system serves as a central mediator of 
reward/aversion [149–160], sleep/arousal [27,161–179], thermoregulation 
[180–184], energy homeostasis [185–196], motor control [197–200] response 
to stress or threat [201–213], and production of theta band oscillations that 
synchronize neuronal networks [27,214–216]. It is this circumscribed area 
of the hypothalamus, with only about 1000 cells, that coordinates diverse, 
contextually appropriate survival behaviors linked to homeostatic 
functions that cycle within the circadian day and oscillate in parallel with 
ultradian frequencies of arousal states during wake and sleep [32].  

We particularly suspect that abnormalities within the orx/hcrt system 
may play a fundamental role in the emergence of FOH given its critical 
importance in thermoregulation [180–184] and sleep wakefulness 
[27,161–179]. Loss of orexin in knock out mice results in elevated 
nocturnal temperature due to inadequate activation of heat loss 
mechanisms or sustained activity in heat-generating systems and is 
associated with sleep fragmentation [182]. We propose that FOH, at its 
core, is a disorder involving the impaired homeostatic regulation of 
certain survival functions, the most dramatic being the dysregulation in 
threat perception and development of fear-based obsessions of harm 
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befalling the individual that may be initiated or induced by a disturbance 
in thermoregulation. We envision orx/hcrt as the output of a 
hypothalamic command center that orchestrates and coordinates 
between these various survival-based behaviors. In contrast, BDNF is 
locally expressed in the regions involved in generating these homeostatic 
processes and likely plays an important role in bringing these behaviors 
about once signaled by enhancing synaptic transmission, shifting the 
balance between excitatory and inhibitory neurotransmission and 
facilitating rapid plastic transformations. We suspect that FOH may 
represent a cluster of highly similar ketamine-responsive disorders 
involving a primary disturbance in either orx/hcrt or BDNF, though this 
remains to be determined. 

DISCUSSION 

In 1972, Feighner, Robins, Guze and Winokur [217] laid out a strategy 
for establishment of a psychiatric taxonomy. In their view psychiatric 
disorders could be distinguished by their symptoms, age of onset, clinical 
course, family history and laboratory measures. FOH readily emerges as 
its own unique disorder or subtype by this strategy. While FOH shares 
with bipolar disorder a severe and pervasive problem with mood 
dysregulation characterized by depression, irritability and at least brief 
periods of mania [9] it stands apart because of the thermoregulatory 
abnormality and the prodromal sequence of nightmares and REM 
intrusions leading to fear-based obsessions and an auto-traumatized 
state resembling PTSD. Further, a ‘fear of harm’ factor was found to be 
even more heritable than depression or mania factors [5] and the 
measurable disturbance in distal/proximal skin temperature at bedtime 
that results in delayed or absent DPG0 could emerge, with further study, 
as a potential biomarker [3]. An important lesson is that the recognition 
of more homogeneous clusters within broad diagnostic categories may 
benefit from assessment of features, such as impaired thermoregulation, 
that go beyond our customary focus. 

There is also increasing recognition that the Feighner et al. [217] 
approach, which has led us from DSM-III to DSM-5, is insufficient. As 
Insel et al. [12] articulated, symptom-based classifications must 
inevitably be flawed as two fundamentally different medical disorders 
can share the same syndromic manifestations and a common underlying 
cause may manifest in distinctly different ways. In the end a taxonomy 
for brain-based psychiatric disorders will require a specific 
understanding of the underlying molecular, cellular and circuit-based 
neurobiology. Hence, we have leveraged what we have learned 
regarding therapeutic effectiveness to hypothesize how ketamine may 
work to address the myriad symptoms of FOH and how they may arise 
from a disturbance in BDNF or the orx/hcrt system. Given the complexity 
of these systems it is also likely that FOH may have more dimensional 
properties than cross categorical boundaries [2]. 
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We need to emphasize that while FOH is not listed in the DSM or ICD 
and relatively few clinicians may be aware of it, it is not a rare disorder. 
According to our data up to a third of youths who present with symptoms 
suggestive of bipolar disorder may have FOH [2]. Clinicians treating 
children, adolescents and emerging adults with severe highly comorbid 
treatment-refractory disorders will have likely encountered several 
without necessarily being aware of their unique features. Inquiring 
about heat sensitivity and cold tolerance, fear-based obsession, defensive 
aggression and nightmares may be revelatory. Though randomized 
controlled trials have not been conducted, clinical experience and blind 
chart review have found that these individuals typically have a good to 
excellent response to intranasal ketamine, which appears to work 
optimally when combined with lithium, and the benefits have endured 
for as long as the patients have been followed [4]. Hence, it is well-worth 
identifying these individuals as it may lead to a crucial change in 
therapeutic approach. 

A number of important limitations need to be acknowledged. First, 
published information on FOH consist primarily of seven peer-reviewed 
articles [1–7] and there is need for independent replication. Hence, we 
strongly encourage colleagues who treat youths with severe mood 
disorders to screen for symptoms of FOH and report their results. Second, 
assessment of distal/proximal temperature gradients and actigraph-
assessed sleep onset identified a potential biomarker, but this needs to be 
replicated and assessed for its capacity to distinguish FOH from other 
psychiatric disorders with disrupted sleep. Third, our hypotheses about 
the potential role of BDNF and orx/hcrt systems is based on clinical 
response to intranasal ketamine and literature review regarding the 
relationship between these neurotransmitter systems and the deep 
phenotypic features of FOH. We have not collected samples and do not 
have genetic, epigenetic or clinical chemistry findings to support these 
hypotheses.  

In short, there is a tremendous amount of work that needs to be done. 
On the other hand, the patients that we have seen have been in dire 
straits—compelling us to apply what we have learned, rather than 
waiting for definitive pathophysiological answers. The identification of 
an underlying disturbance in thermoregulation and heat dissipation has 
been a critically important insight as it has led to complementary 
strategies such as use of cooling baths and bedside fans to improve sleep 
and overall well-being. We have also learned that individuals with FOH tend 
to become more symptomatic when exposed to abrupt changes in weather 
pattern so we can adjust accordingly and not mistake a transient weather-
related disruption for a more fundamental change in their condition.  

It is interesting that critical components of FOH are found in specific 
DSM disorders. Nightmare disorder captures the frequent, intensely 
disturbing dreams that wake the sleeper and the subsequent emergence 
of dysphoria without recognizing the risk for auto-traumatization and 
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symptoms of PTSD. DSM-5 now includes an “anxious distress” specifier 
for bipolar disorder or major depression which stems from the 
recognition that these individuals may have an increased risk for suicide 
and a particularly poor response to treatment. However, this specifier 
includes individuals with relatively mild symptoms of anxiety (feeling 
keyed up, unusually restless, difficulty concentrating) as well as 
individual who fear that something awful may happen or fear that they 
might lose control, which comes close to the concept of fear of harm that 
we propose is the overt manifestation of the underlying problem 
responsible for their poor prognosis. Overall, individuals with FOH 
typically receive an expanding list of DSM diagnoses throughout 
childhood. An advantage of the FOH construct, and focus on 
neurobiology, is the ultimate recognition that the diverse array of 
disparate appearing symptoms that constitutes their deep phenotype 
come together in a meaningful way and stem from a specific underlying 
cause rather than from an unfortunate combination of unrelated 
comorbidities. Ongoing studies should further clarify our understanding 
of this disorder. 
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