SP Children's[™] Immune

Available Size: 16000 | 60 Chewable Wafers

- Supports the immune system*
- Is an excellent source of vitamin D, zinc, and antioxidant vitamin C
- Contains prebiotic 2'-FL and bovine colostrum
- Made from whole food-based ingredients
- Chewable supplement

NON SOY

• Draws flavor from organic ingredients: elderberry and whole strawberry

Supplement Facts

Serving Size: 2 Wafers Servings per Container: 30

	Amount per Serving	%Daily Value
Vitamin C	25 mg	28%
Vitamin D	15 mcg	75%
Zinc	6 mg	55%
2'-Fucosyllactose	1200 mg	†
Colostrum (bovine)	500 mg	†
Proprietary Blend	426 mg	†
Organic strawberry fruit powder, organic elderberry fruit powder, organic guar		
fiber, organic beet (root), and monk fruit extract.		

†Daily Value not established.

Other Ingredients: Organic camu camu (berry), organic manioc (root), zinc amino acid (rice) chelate, calcium stearate, acacia fiber, sucrose, modified corn starch, and cholecalciferol.

Contains: Milk.

Warning: Keep out of reach of children.

01

Vitamin C, Vitamin D, Zinc, and the Immune System

The immune system is responsible for keeping out foreign substances, protecting the body, and helping maintain wellness throughout a person's lifespan. When nutrition is poor, a healthy immune response can be compromised.¹ On the other hand, consuming adequate amounts of essential nutrients is crucial for the immune response's function and development.¹

Certain micronutrients — such as vitamin C, vitamin D, and zinc — are vitally important for the immune system throughout all life stages, including childhood.¹ **SP Children's[™] Immune** is an excellent source of all three.

Vitamin C helps support immune system defense by:

- Enhancing innate immune pathways²
- Enhancing phagocytosis²
- Supporting adaptive immunity through differentiation and proliferation of B- and T- lymphocytes²
- Contributing to the body's antioxidant system²

Vitamin D is an essential component of a child's immune system and assists immune function by:

- Serving as a regulator of healthy immune function¹
- Promoting phagocytosis and superoxide synthesis¹

Zinc is especially important for children, where adequate status helps the body during immune system challenges.³ It also:

- Plays a role in both innate and adaptive immune responses¹
- Assists in DNA synthesis, cellular growth, cell differentiation, antioxidant function, and immune cell function⁴⁻⁹

SP Children's[™] Immune

Contains Prebiotic 2'-FL

The largest immune organ in the body is the GI tract. Its barrier function is a key immune function, and it is where a substantial amount of immune cells are housed.¹⁰

SP Children's[™] Immune contains 2'-FL: a novel prebiotic carbohydrate that is derived from a microbial fermentation process to be structurally equivalent to human milk. Because it is able to resist digestion, it can effectively reach the lower GI tract¹¹⁻¹⁴ where it is broken down to feed the growth of beneficial microbes.^{13-18*∧}

Colostrum for Dietary Immunoglobulins

SP Children's[™] Immune contains 500mg of bovine colostrum, standardized to deliver concentrated immunoglobulins (specifically IgGs) from a whole food source (cow's milk).

As part of the immune system, immunoglobulins support a normal, healthy immune response in the GI tract.¹⁹ As dietary additions, these have been used as nutritional support for the immune system in the gastrointestinal tract.²⁰ Studies in children have used formulations with bovine colostrum to provide immune system support.^{21,22}

^To date, shown in multiple animal studies, infants, and one adult human study.

Scientifically Driven. Practitioner Backed. Kid Approved.

Driven by the same safety, purity, and efficacy standards that go into our high-quality adult supplements, **SP Children's**[™] products are specifically formulated to address the unique needs of young bodies. We utilize organic farming practices and cutting-edge manufacturing methods to ensure that our products deliver vital nutrients in a tasty form.

REFERENCES

- 1. Calder PC. Proc Nutr Soc. 2013 Aug;72(3):299-309. doi: 10.1017/ S0029665113001286.
- 2. Carr AC, Maggini S. 2017;9(11):1211. doi: 10.3390/nu9111211.
- Bhatnagar S, Natchu UCM. 2004;71(11):991-5. doi: 10.1007/BF02828114.
 Shankar AH, Prasad AS. 1998;68(2 Suppl):447s-63s. Epub 1998/08/13. doi: 10.1093/ajcn/68.2.447S.
- Rink L, Gabriel P. 2000;59(4):541-52. Epub 2000/01/11. doi: 10.1017/ s0029665100000781.
- Gao H, Dai W, Zhao L, Min J, Wang F. 2018;2018:6872621. Epub 2019/01/10. doi: 10.1155/2018/6872621.
 Maywald M, Wessels I, Bink L. 2017;18(10). Epub 2017/10/25. doi:
- Maywald M, Wessels I, Min L. 2017, 10(10). Epide 2017/10/23. doi: 10.3390/jims18102222.
 Wessels I, Maywald M, Rink L. 2017;9(12). Epide 2017/12/01. doi:
- 10.3390/nu9121286. 9. Maggini S, Pierre A, Calder PC. 2018;10(10):1531. doi: 10.3390/ nu10101531
- nu IU 10 1531.
 Di Bartolomeo F, Startek JB, Van den Ende W. 2013;27(10):1457-73. doi: 10.1002/ptr.4901.
- 1002/pt.4901.
 Milani C, Duranti S, Bottacini F, Casey E, Turroni F, Mahony J, et al. MMBR. 2017;81(4):e00036-17. doi: 10.1128/MMBR.00036-17.
- Underwood MA, Gaerlan S, De Leoz MLA, Dimapasoc L, Kalanetra KM, Lemay DG, et al. 2015;78(6):670.
- Elison E, Vigsnaes LK, Rindom Krogsgaard L, Rasmussen J, Sorensen N, McConnell B, et al. 2016;116(8):1356-68. Epub 2016/10/22. doi: 10.1017/ S0007114516003354.

- Iribarren C, Törnblom H, Aziz I, Magnusson MK, Sundin J, Vigsnæs LK, et al 2019;156(6):S-242. doi: 10.1016/S0016-5085(19)37409-8.
- Bai Y, Tao J, Zhou J, Fan Q, Liu M, Hu Y, et al. 2018;3(6):e00206-18. doi: 10.1128/mSystems.00206-18.
- 16. Sela DA, Mills DA. 2010;18(7):298-307. Epub 04/19. doi: 10.1016/j. t/m.2010.03.008.
- Matsuki T, Yahagi K, Mori H, Matsumoto H, Hara T, Tajima S, et al. 2016;7:11939-. doi: 10.1038/ncomms11939.
 Asakuma S, Hatakeyama E, Urashima T, Yoshida E, Katayama T, Yamamoto
- Asakuma S, Hatakeyama E, Urashima T, Yoshida E, Katayama T, Yamamoto K, et al. 2011;286(40):34583-92. Epub 08/09. doi: 10.1074/jbc. M111.248138.
- 19. Lefranc M-P, Lefranc G. 2001. Academic Press; 2001
- Gapper LW, Copestake DEJ, Otter DE, Indyk HE. 2007;389(1):93-109. doi: 10.1007/s00216-007-1391-z.
- 21. Patıroglu T, Kondolot M. 2013;7(1):21-6. Epub 2011/08/02. doi: 10.1111/j.1752-699X.2011.00268.x.
- Ulfman LH, Leusen JHW, Savelkoul HFJ, Warner JO, van Neerven RJJ. 2018;5:52-. doi: 10.3389/fnut.2018.00052.

*These statements have not been evaluated by the Food and Drug Administration. These products are not intended to diagnose, treat, cure, or prevent any disease.